Ionic Transport and Electrochemical Properties of NaSICON-Type Li1+XHf2-XGaX(PO4)3 for All-Solid-State Lithium Batteries

被引:5
作者
Ladenstein, Lukas [1 ]
Hogrefe, Katharina [1 ]
Wilkening, H. Martin R. [1 ]
机构
[1] Graz Univ Technol NAWI Graz, Inst Chem & Technol Mat, A-8010 Graz, Austria
关键词
solid electrolytes; NaSICON; ion dynamics; NMR; conductivity; all-solid-state batteries; PHASE-TRANSITION; LI METAL; CONDUCTIVITY; LIHF2(PO4)(3); RELAXATION; INTERFACE; CRYSTALLINE; DIFFUSIVITY; ELECTROLYTE; PARAMETERS;
D O I
10.1021/acsaem.2c01304
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
ABSTRACT: NaSICON-type rhombohedral LiHf2(PO4)3 (LHP) is regarded as a quite promising solid electrolyte for future all-solid-state Li-ion batteries. Appropriate aliovalent substitution is, however, necessary to achieve high ionic conductivities. A clear-cut understanding of the substitution effects on microscopic Li+ ion dynamics is necessary to optimize its conduction properties. To advance in the field, we prepared a series of Ga-bearing Li1+xHf2-xGax(PO4)3 (Ga-LHP) samples (x = 0, 0.1, ... 0.4, 1.0) to comprehensively investigate the relationship between composition and Li+ ion dynamics. 7Li and 31P NMR helped us characterize the extent of structural disorder introduced through the replacement of Hf by Ga. In a complementary way, we compare our results from broadband conductivity spectroscopy with those obtained from time-domain NMR measurements being sensitive to long-range ion transport and to the elementary Li+ jump processes. This methodical approach allowed us to trace ion dynamics over a wide length scale. It turned out that the sample with a Ga content x of only 0.1 (89.3% relative density) showed the highest bulk conductivity of 0.45 mS cm-1 (0.24 eV). Importantly, activation energies as deduced from spin-lattice relaxation NMR point to activation energies ranging from 0.15 to 0.23 eV, revealing a rather flat potential landscape to which the ions are subjected in the different forms of Ga-LHP. To test its electrochemical applicability in allsolid-state batteries, we used cyclic voltammetry, Li plating-stripping experiments, and galvanostatic cycling measurements with current densities of up to 0.1 mA cm-2. An electrochemical stability window of 2.4 to 4.6 V, a critical current density of at least 25 mA cm-2, and a long cycle life of more than 1900 charge/discharge cycles (60 degrees C) make Li1.1Hf1.9Ga0.1(PO4)3, with a slight amount of Ga incorporated, indeed a highly promising alternative to current solid electrolytes.
引用
收藏
页码:8823 / 8834
页数:12
相关论文
共 61 条
[31]   Sr2+-doped rhombohedral LiHf2(PO4)3solid electrolyte for all-solid-state Li-metal battery [J].
Li, Qing-Hui ;
Xu, Chang ;
Huang, Bing ;
Yin, Xin .
RARE METALS, 2020, 39 (09) :1092-1098
[32]   Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries [J].
Liu, Jia ;
Yuan, Hong ;
Liu, He ;
Zhao, Chen-Zi ;
Lu, Yang ;
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED ENERGY MATERIALS, 2022, 12 (04)
[33]   Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition [J].
Liu, Yulong ;
Sun, Qian ;
Zhao, Yang ;
Wang, Biqiong ;
Kaghazchi, Payam ;
Adair, Keegan R. ;
Li, Ruying ;
Zhang, Cheng ;
Liu, Jingru ;
Kuo, Liang-Yin ;
Hu, Yongfeng ;
Sham, Tsun-Kong ;
Zhang, Li ;
Yang, Rong ;
Lu, Shigang ;
Song, Xiping ;
Sun, Xueliang .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (37) :31240-31248
[34]   Reversible triclinic-rhombohedral phase transition in LiHf2(PO4)(3): Crystal structures from neutron powder diffraction [J].
Losilla, ER ;
Aranda, MAG ;
MartinezLara, M ;
Bruque, S .
CHEMISTRY OF MATERIALS, 1997, 9 (07) :1678-1685
[35]   Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies [J].
Lu, Yang ;
Zhao, Chen-Zi ;
Yuan, Hong ;
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (18)
[36]   An in situ element permeation constructed high endurance Li-LLZO interface at high current densities [J].
Lu, Yang ;
Huang, Xiao ;
Ruan, Yadong ;
Wang, Qingsong ;
Kun, Rui ;
Yang, Jianhua ;
Wen, Zhaoyin .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (39) :18853-18858
[37]   Bulk and grain-boundary ionic conductivity in sodium zirconophosphosilicate Na3Zr2(SiO4)2PO4 (NASICON) [J].
Lunghammer, S. ;
Ma, Q. ;
Rettenwander, D. ;
Hanzu, I. ;
Tietz, F. ;
Wilkening, H. M. R. .
CHEMICAL PHYSICS LETTERS, 2018, 701 :147-150
[38]  
MartinezJuarez A, 1997, J BRAZIL CHEM SOC, V8, P261
[39]   LITHIUM ORDER-DISORDER TRANSITIONS IN 2H-LIXTAS2 [J].
MCKINNON, WR ;
DAHN, JR .
SOLID STATE COMMUNICATIONS, 1983, 48 (01) :43-45
[40]   Macroscopic and microscopic Li+ transport parameters in cubic garnet-type "Li6.5La2.5Ba0.5ZrTaO12" as probed by impedance spectroscopy and NMR [J].
Narayanan, S. ;
Epp, V. ;
Wilkening, M. ;
Thangadurai, V. .
RSC ADVANCES, 2012, 2 (06) :2553-2561