Exact boundary controllability for the ideal magneto-hydrodynamic equations

被引:5
作者
Kukavica, Igor [1 ]
Novack, Matthew [2 ]
Vicol, Vlad [3 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Inst Adv Study, Sch Math, 1 Einstein Dr, Princeton, NJ 08540 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
D O I
10.1016/j.jde.2022.02.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the problem of controllability of the MHD system in a rectangular domain with a control prescribed on the side boundary. We identify a necessary and sufficient condition on the data to be null-controllable, i.e., can be driven to the zero state. We also show that the validity of this condition allows the states to be stirred to each other. If the condition is not satisfied, one can move from one state to another with the help of a simple shear external magnetic force. (C)& nbsp;2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 112
页数:19
相关论文
共 50 条
[21]   MAGNETO-HYDRODYNAMIC WAVES [J].
STEINBERG, MS .
PHYSICAL REVIEW, 1952, 87 (01) :173-173
[22]   EXACT CONTROLLABILITY ON THE BOUNDARY OF MAXWELL EQUATIONS [J].
NALIN, O .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (13) :811-815
[24]   Decay for turbulent solutions of the magneto-hydrodynamic equations in an exterior domain [J].
Liu, Zhaoxia ;
Han, Pigong .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (09)
[26]   The Galerkin boundary node method for magneto-hydrodynamic (MHD) equation [J].
Tatari, Mehdi ;
Ghasemi, Fatemeh .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 258 :634-649
[27]   A splitting discontinuous Galerkin projection method for the magneto-hydrodynamic equations [J].
Wei, Yuanhong ;
Zou, Guang-an .
APPLIED NUMERICAL MATHEMATICS, 2024, 197 :363-388
[28]   Ergodicity of stochastic Magneto-Hydrodynamic equations driven by α-stable noise [J].
Shen, Tianlong ;
Huang, Shanhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) :746-769
[29]   A conservative stabilized finite element method for the magneto-hydrodynamic equations [J].
Ben Salah, N ;
Soulaimani, A ;
Habashi, WG ;
Fortin, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 29 (05) :535-554
[30]   AN EXACT DIVERGENCE-FREE SPECTRAL METHOD FOR INCOMPRESSIBLE AND RESISTIVE MAGNETO-HYDRODYNAMIC EQUATIONS IN TWO AND THREE DIMENSIONS [J].
Qin, Lechang ;
Li, Huiyuan ;
Yang, Zhiguo .
arXiv, 2023,