Hyperspectral and LiDAR Data Classification Using Joint CNNs and Morphological Feature Learning

被引:40
|
作者
Roy, Swalpa Kumar [1 ]
Deria, Ankur [1 ]
Hong, Danfeng [2 ]
Ahmad, Muhammad [3 ]
Plaza, Antonio [4 ]
Chanussot, Jocelyn [5 ]
机构
[1] Jalpaiguri Govt Engn Coll, Dept Comp Sci & Engn, Jalpaiguri 735102, India
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[3] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Chiniot Faisalabad Campus, Islamabad 35400, Chiniot, Pakistan
[4] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[5] Univ Grenoble Alpes, Grenoble INP, CNRS, GIPSA Lab, F-38000 Grenoble, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Laser radar; Data mining; Data models; Kernel; Shape; Representation learning; Convolutional neural networks (CNNs); hyperspectral image (HSI) classification; light detection and ranging (LiDAR); LAND-COVER CLASSIFICATION; REMOTE-SENSING IMAGES; DATA FUSION; PROFILES; NETWORKS;
D O I
10.1109/TGRS.2022.3177633
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have been extensively utilized for hyperspectral image (HSI) and light detection and ranging (LiDAR) data classification. However, CNNs have not been much explored for joint HSI and LiDAR image classification. Therefore, this article proposes a joint feature learning (HSI and LiDAR) and fusion mechanism using CNN and spatial morphological blocks, which generates highly accurate land-cover maps. The CNN model comprises three Conv3D layers and is directly applied to the HSIs for extracting discriminative spectral-spatial feature representation. On the contrary, the spatial morphological block is able to capture the information relevant to the height or shape of the different land-cover regions from LiDAR data. The LiDAR features are extracted using morphological dilation and erosion layers that increase the robustness of the proposed model by considering elevation information as an additional feature. Finally, both the obtained features from CNNs and spatial morphological blocks are combined using an additive operation prior to the classification. Extensive experiments are shown with widely used HSIs and LiDAR datasets, i.e., University of Houston (UH), Trento, and MUUFL Gulfport scene. The reported results show that the proposed model significantly outperforms traditional methods and other state-of-the-art deep learning models. The source code for the proposed model will be made available publicly at https://github.com/AnkurDeria/HSI+LiDAR.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Classification of Hyperspectral and LiDAR Data Using Coupled CNNs
    Hang, Renlong
    Li, Zhu
    Ghamisi, Pedram
    Hong, Danfeng
    Xia, Guiyu
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4939 - 4950
  • [2] Multiview Feature Learning and Multilevel Information Fusion for Joint Classification of Hyperspectral and LiDAR Data
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Joint Classification of Hyperspectral and LiDAR Data Using a Hierarchical CNN and Transformer
    Zhao, Guangrui
    Ye, Qiaolin
    Sun, Le
    Wu, Zebin
    Pan, Chengsheng
    Jeon, Byeungwoo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Joint Classification of Hyperspectral and LiDAR Data Based on Mamba
    Liao, Diling
    Wang, Qingsong
    Lai, Tao
    Huang, Haifeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] Multimodal Deep Learning for Semisupervised Classification of Hyperspectral and LiDAR Data
    Pu, Chunyu
    Liu, Yingxu
    Lin, Shuai
    Shi, Xu
    Li, Zhengying
    Huang, Hong
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 821 - 834
  • [6] MSLAENet: Multiscale Learning and Attention Enhancement Network for Fusion Classification of Hyperspectral and LiDAR Data
    Fan, Yingying
    Qian, Yurong
    Qin, Yugang
    Wan, Yaling
    Gong, Weijun
    Chu, Zhuang
    Liu, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 10041 - 10054
  • [7] Dynamic Cross-Modal Feature Interaction Network for Hyperspectral and LiDAR Data Classification
    Lin, Junyan
    Gao, Feng
    Qi, Lin
    Dong, Junyu
    Du, Qian
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [8] Ternary Modality Contrastive Learning for Hyperspectral and LiDAR Data Classification
    Xia, Shuxiang
    Zhang, Xiaohua
    Meng, Hongyun
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] Pseudolabeling Contrastive Learning for Semisupervised Hyperspectral and LiDAR Data Classification
    Li, Zhongwei
    Wang, Yuewen
    Wang, Leiquan
    Guo, Fangming
    Yang, Yajie
    Wei, Jie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17099 - 17116
  • [10] Deep Hierarchical Vision Transformer for Hyperspectral and LiDAR Data Classification
    Xue, Zhixiang
    Tan, Xiong
    Yu, Xuchu
    Liu, Bing
    Yu, Anzhu
    Zhang, Pengqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3095 - 3110