A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices

被引:42
作者
Feng, Yongliang [1 ,2 ]
Sagaut, Pierre [3 ]
Tao, Wen-Quan [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, Xian 710049, Peoples R China
[2] Univ Paris 06, UMR 7190, Inst Jean Rond dAlembert, 4 Pl Jussieu Case 162, F-75252 Paris, France
[3] Aix Marseille Univ, CNRS, Cent Marseille, UMR 7340 M2P2, F-13451 Marseille, France
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann; Compressible; Shock wave; Double distribution function; NAVIER-STOKES EQUATION; SCHEMES;
D O I
10.1016/j.compfluid.2016.03.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A multi-dimensional double distribution function thermal lattice Boltzmann model has been developed to simulate fully compressible flows at moderate Mach number. The lattice Boltzmann equation is temporally and spatially discretizated by an asymptotic preserving finite volume scheme. The micro-velocities discretization is adopted on regular low-symmetry lattices (D1Q3, D2Q9, D3Q15, D3Q19, D3Q27). The third-order Hermite polynomial density distribution function on low-symmetry lattices is used to solve the flow field, while a second-order energy distribution is employed to compute the temperature field. The fully compressible Navier-Stokes equations are recovered by standard order Gauss-Hermite polynomial expansions of Maxwell distribution with cubic correction terms, which are added by an external force expressed in orthogonal polynomials form. The proposed model is validated considering several benchmark cases, namely the Sod shock tube, thermal Couette flow and two-dimensional Riemann problem. The numerical results are in very good agreement with both analytical solution and reference results. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:45 / 55
页数:11
相关论文
共 31 条
[1]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[2]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[3]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[4]   Stable lattice Boltzmann schemes with a dual entropy approach for monodimensional nonlinear waves [J].
Dubois, Francois .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (02) :142-159
[5]   A three dimensional lattice model for thermal compressible flow on standard lattices [J].
Feng, Yongliang ;
Sagaut, Pierre ;
Tao, Wenquan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 :514-529
[6]   A Compressible Thermal Lattice Boltzmann Model with Factorization Symmetry [J].
Feng, Yongliang ;
Tao, Wen-Quan .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2014, 66 (06) :544-562
[7]   Multispeed entropic lattice Boltzmann model for thermal flows [J].
Frapolli, N. ;
Chikatamarla, S. S. ;
Karlin, I. V. .
PHYSICAL REVIEW E, 2014, 90 (04)
[8]   Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model [J].
Guo, Zhaoli ;
Zheng, Chuguang ;
Shi, Baochang ;
Zhao, T. S. .
PHYSICAL REVIEW E, 2007, 75 (03)
[9]   Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case [J].
Guo, Zhaoli ;
Wang, Ruijie ;
Xu, Kun .
PHYSICAL REVIEW E, 2015, 91 (03)
[10]   Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case [J].
Guo, Zhaoli ;
Xu, Kun ;
Wang, Ruijie .
PHYSICAL REVIEW E, 2013, 88 (03)