Emerging ocean observations for interdisciplinary data assimilation systems

被引:90
|
作者
Dickey, TD [1 ]
机构
[1] Univ Calif Santa Barbara, Ocean Phys Lab, Goleta, CA 93117 USA
关键词
observation system simulation experiments; data assimilation; sampling networks; SUBSPACE STATISTICAL ESTIMATION; PHYSICAL-BIOGEOCHEMICAL MODEL; CENTRAL EQUATORIAL PACIFIC; MARINE ECOSYSTEM MODEL; HARMFUL ALGAL BLOOMS; NORTH-ATLANTIC; MESOSCALE VARIABILITY; NUMERICAL-SIMULATION; FORECASTING SYSTEM; PLANKTON RECORDER;
D O I
10.1016/S0924-7963(03)00011-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Identification, understanding, and prediction of many interdisciplinary oceanographic processes remain as elusive goals of ocean science. However, new ocean technologies are being effectively used to increase the variety and numbers of sampled variables and thus to fill in the gaps of the time-space continuum of interdisciplinary ocean observations. The formulation, accuracy, and efficacy of data assimilative models are highly dependent upon the quality and quantity of interdisciplinary observational data. In turn, the design of optimal sampling networks will benefit from data assimilative-based observation system simulation experiments (OSSEs). The present contribution, which is directed toward both modelers and observationalists, reviews emerging interdisciplinary observational capabilities and their optimal utilization in data assimilative models. (C) 2003 Elsevier Science B.V All rights reserved.
引用
收藏
页码:5 / 48
页数:44
相关论文
共 50 条
  • [21] Approximate Variational Method for Ocean Data Assimilation
    Motoyoshi Ikeda
    Journal of Oceanography, 2003, 59 : 79 - 86
  • [22] Mapping and pseudoinverse algorithms for ocean data assimilation
    Fieguth, PW
    Menemenlis, D
    Fukumori, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (01): : 43 - 51
  • [23] Approximate variational method for ocean data assimilation
    Ikeda, M
    JOURNAL OF OCEANOGRAPHY, 2003, 59 (01) : 79 - 86
  • [24] Impact of data assimilation on vertical velocities in an eddy resolving ocean model
    Pilo, Gabriela S.
    Oke, Peter R.
    Coleman, Richard
    Rykova, Tatiana
    Ridgway, Ken
    OCEAN MODELLING, 2018, 131 : 71 - 85
  • [25] An ocean data assimilation system and reanalysis of the World Ocean hydrophysical fields
    A. A. Zelenko
    R. M. Vil’fand
    Yu. D. Resnyanskii
    B. S. Strukov
    M. D. Tsyrulnikov
    P. I. Svirenko
    Izvestiya, Atmospheric and Oceanic Physics, 2016, 52 : 443 - 454
  • [26] An Ocean Data Assimilation System and Reanalysis of the World Ocean Hydrophysical Fields
    Zelenko, A. A.
    Vil'fand, R. M.
    Resnyanskii, Yu. D.
    Strukov, B. S.
    Tsyrulnikov, M. D.
    Svirenko, P. I.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2016, 52 (04) : 443 - 454
  • [27] The impact of the assimilation of Aquarius sea surface salinity data in the GEOS ocean data assimilation system
    Vernieres, G.
    Kovach, R.
    Keppenne, C.
    Akella, S.
    Brucker, L.
    Dinnat, E.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (10) : 6974 - 6987
  • [28] Using Sea Surface Temperature Observations to Constrain Upper Ocean Properties in an Arctic Sea Ice-Ocean Data Assimilation System
    Liang, Xi
    Losch, Martin
    Nerger, Lars
    Mu, Longjiang
    Yang, Qinghua
    Liu, Chengyan
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (07) : 4727 - 4743
  • [29] A parallel data assimilation model for oceanographic observations
    van Hees, F
    Van der Steen, AJ
    van Leeuwen, PJ
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2003, 15 (13) : 1191 - 1204
  • [30] Data assimilation for magnetohydrodynamics systems
    Mendoza, OB
    De Moor, B
    Bernstein, DS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) : 242 - 259