Smoothness of harmonic maps for hypoelliptic diffusions

被引:6
作者
Picard, J [1 ]
机构
[1] Univ Blaise Pascal, CNRS UMR 6620, Lab Math Appl, F-63177 Clermont Ferrand, France
关键词
harmonic maps; manifold-valued martingales; stochastic calculus on; manifolds; Malliavin calculus;
D O I
10.1214/aop/1019160255
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Harmonic maps are viewed as maps sending a fixed diffusion to manifold-valued martingales. Under a convexity condition, we prove that the continuity of real-valued harmonic functions implies the continuity of harmonic maps. Then we prove with a probabilistic method that continuous harmonic maps are smooth under Hormander's condition; the proof relies on the study of martingales with values in the tangent bundle.
引用
收藏
页码:643 / 666
页数:24
相关论文
共 28 条
[11]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[12]  
EMERY M, 1991, LECT NOTES MATH, V1485, P220
[13]  
EMERY M, 1984, LECT NOTES MATH, V1059, P501
[14]  
Emery M., 1989, STOCHASTIC CALCULUS, DOI DOI 10.1007/978-3-642-75051-9
[15]  
HELEIN F, 1991, CR ACAD SCI I-MATH, V312, P591
[16]   Subelliptic harmonic maps [J].
Jost, J ;
Xu, CJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (11) :4633-4649
[18]  
KENDALL WS, 1990, P LOND MATH SOC, V61, P371
[19]  
KENDALL WS, 1991, J LOND MATH SOC, V43, P567
[20]  
KUSUOKA S., 1987, J FAC SCI U TOKYO 1A, VA34, P391