ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS

被引:1
|
作者
Shcherbakov, E. A. [1 ]
Avdeyev, I. A. [1 ]
机构
[1] Kuban State Univ, 149 Stavropolskaya Str, Krasnodar 350040, Russia
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2019年 / 8卷 / 03期
关键词
quasi-conformal mappings; sobolev spaces; elliptic systems; embedding theorems; topological mappings; Dirichlet integral; Douglas integral; harmonic functions;
D O I
10.15393/j3.art.2019.6670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an elliptic system in the disk vertical bar z vertical bar < 1 for the so-called p-analytic functions. This system admits degeneration at the boundary of the disk. We prove compactness of the family of K-quasiconformal mappings, which are the solutions of the uniformly elliptic systems approximating the degenerating one.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 50 条
  • [31] Stretching and Rotation of Planar Quasiconformal Mappings on a Line
    Hirviniemi, Olli
    Prause, Istvan
    Saksman, Eero
    POTENTIAL ANALYSIS, 2023, 59 (01) : 337 - 347
  • [32] Stretching and Rotation of Planar Quasiconformal Mappings on a Line
    Olli Hirviniemi
    István Prause
    Eero Saksman
    Potential Analysis, 2023, 59 : 337 - 347
  • [33] Quasiconformal mappings and solutions of the dispersionless KP hierarchy
    Konopelchenko, B
    Alonso, LM
    Medina, E
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (02) : 1529 - 1538
  • [34] On the inverse KI-inequality for one class of mappings
    Dovhopiatyi, Oleksandr
    Sevost'yanov, Evgeny
    FILOMAT, 2023, 37 (24) : 8145 - 8156
  • [35] Composition operators on Hardy-Sobolev spaces and BMO-quasiconformal mappings
    Menovschikov A.
    Ukhlov A.
    Journal of Mathematical Sciences, 2021, 258 (3) : 313 - 325
  • [36] On distortion theorem for N-set quasiconformal mappings
    Huang, XZ
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 157 - 167
  • [37] A SIMPLE DEFORMATION OF QUASICONFORMAL HARMONIC MAPPINGS IN THE UNIT DISK
    Partyka, Dariusz
    Sakan, Ken-ichi
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (02) : 539 - 556
  • [38] Riesz conjugate functions theorem for harmonic quasiconformal mappings
    Liu, Jinsong
    Zhu, Jian-Feng
    ADVANCES IN MATHEMATICS, 2023, 434
  • [39] A Koebe distortion theorem for quasiconformal mappings in the Heisenberg group
    Adamowicz, Tomasz
    Fassler, Katrin
    Warhurst, Ben
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) : 147 - 186
  • [40] Criteria for quasiconformal extensions of some classes of harmonic mappings
    Satpati, Goutam
    JOURNAL OF ANALYSIS, 2025,