ON THE COMPACTNESS OF ONE CLASS OF QUASICONFORMAL MAPPINGS

被引:1
|
作者
Shcherbakov, E. A. [1 ]
Avdeyev, I. A. [1 ]
机构
[1] Kuban State Univ, 149 Stavropolskaya Str, Krasnodar 350040, Russia
来源
PROBLEMY ANALIZA-ISSUES OF ANALYSIS | 2019年 / 8卷 / 03期
关键词
quasi-conformal mappings; sobolev spaces; elliptic systems; embedding theorems; topological mappings; Dirichlet integral; Douglas integral; harmonic functions;
D O I
10.15393/j3.art.2019.6670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an elliptic system in the disk vertical bar z vertical bar < 1 for the so-called p-analytic functions. This system admits degeneration at the boundary of the disk. We prove compactness of the family of K-quasiconformal mappings, which are the solutions of the uniformly elliptic systems approximating the degenerating one.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 50 条
  • [1] On the theory of generalized quasiconformal mappings
    Gol’dshtein V.
    Sevost’yanov E.
    Ukhlov A.
    Complex Analysis and its Synergies, 2024, 10 (1)
  • [2] On the Equicontinuity of Generalized Quasiconformal Mappings by Prime Ends
    Ilkevych, Nataliya
    Sevost'yanov, Evgeny
    Ukhlov, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (04)
  • [3] Variation of quasiconformal mappings on lines
    Kovalev, Leonid V.
    Onninen, Jani
    STUDIA MATHEMATICA, 2009, 195 (03) : 257 - 274
  • [4] A note on harmonic quasiconformal mappings
    Chen, Xingdi
    Fang, Ainong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) : 607 - 613
  • [5] Cluster sets and quasiconformal mappings
    Nakki, Raimo
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (1-3) : 31 - 47
  • [6] Quasiconformal Mappings with Replaced Dilatation
    Kuehnau, Reiner
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS, 2016, 667 : 181 - 186
  • [7] On the boundary behavior of weak (p; q)-quasiconformal mappings
    Gol’dshtein V.
    Sevost’yanov E.
    Ukhlov A.
    Journal of Mathematical Sciences, 2023, 270 (3) : 420 - 427
  • [8] Sharp bounds for composition with quasiconformal mappings in Sobolev spaces
    Oliva, Marcos
    Prats, Marti
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (02) : 1026 - 1044
  • [9] Quasiconformal mappings and Neumann eigenvalues of divergent elliptic operators
    Gol'dshtein, V
    Pchelintsev, V
    Ukhlov, A.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (09) : 2281 - 2302
  • [10] (K, K')-quasiconformal Harmonic Mappings
    Kalaj, David
    Mateljevic, Miodrag
    POTENTIAL ANALYSIS, 2012, 36 (01) : 117 - 135