Non-fixed and asymmetrical margin approach to stock market prediction using support vector regression

被引:0
|
作者
Yang, HQ [1 ]
King, I [1 ]
Chan, LW [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, Support Vector Regression (SVR) has been applied to financial time series prediction. Typical characteristics of financial time series are non-stationary and noisy in nature. The volatility, usually time-varying, of the time series is therefore some valuable information about the series. Previously, we had proposed to use the volatility to adaptively change the width of the margin of SVR. We have noticed that upside margin and downside margin do not necessary be the same, and we have observed that their choice would affect the upside risk, downside risk and as well as the overall prediction result. In this paper, we introduce a novel approach to adapt the asymmetrical margins using momentum. We applied and compared this method to predict the Hang Seng Index and Dow Jones Industrial Average.
引用
收藏
页码:1398 / 1402
页数:5
相关论文
共 50 条
  • [41] Structured Maximum Margin Twin Support Vector Machine and Its Application in Stock Trend Prediction
    Lin, Mingsong
    Yang, Xiaomei
    Yang, Zhixia
    Computer Engineering and Applications, 2024, 60 (11) : 346 - 355
  • [42] Software Defect Prediction Using Fuzzy Support Vector Regression
    Yan, Zhen
    Chen, Xinyu
    Guo, Ping
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 2, PROCEEDINGS, 2010, 6064 : 17 - +
  • [43] Prediction of PM10 using Support Vector Regression
    Arampongsanuwat, Soawalak
    Meesad, Phayung
    INFORMATION AND ELECTRONICS ENGINEERING, 2011, 6 : 120 - 124
  • [44] Prediction of water quality parameters using support vector regression
    Pali Sahu
    Shreenivas N. Londhe
    Preeti S. Kulkarni
    Innovative Infrastructure Solutions, 2023, 8
  • [45] Early Prediction of Weight at Birth Using Support Vector Regression
    Campos Trujillo, Oliver
    Perez-Gonzalez, Jorge
    Medina-Banuelos, Veronica
    VIII LATIN AMERICAN CONFERENCE ON BIOMEDICAL ENGINEERING AND XLII NATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2020, 75 : 37 - 41
  • [46] Prediction of water quality parameters using support vector regression
    Sahu, Pali
    Londhe, Shreenivas N.
    Kulkarni, Preeti S.
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2023, 8 (09)
  • [47] Rice Yield Prediction using a Support Vector Regression method
    Jaikla, Ratchaphum
    Auephanwiriyakul, Sansanee
    Jintrawet, Attachai
    ECTI-CON 2008: PROCEEDINGS OF THE 2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2008, : 29 - +
  • [48] Unemployment Rate and GDP Prediction Using Support Vector Regression
    Ulker, Ezgi Deniz
    Ulker, Sadik
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENCE AND SYSTEM, AISS 2019, 2019,
  • [49] Feature Selection Using Probabilistic Prediction of Support Vector Regression
    Yang, Jian-Bo
    Ong, Chong-Jin
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 954 - 962
  • [50] Hardgrove grindability index prediction using support vector regression
    Rao, B. Venkoba
    Gopalakrishna, S. J.
    INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2009, 91 (1-2) : 55 - 59