Multiplicity results for a third order boundary value problem at resonance

被引:73
作者
Ma, RY [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Gansu, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
关键词
O-epi maps; solution set; Lyapunov-Schmidt procedure; third order BVP; at resonance;
D O I
10.1016/S0362-546X(97)00494-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:493 / 499
页数:7
相关论文
共 8 条
[1]   EXISTENCE AND UNIQUENESS THEOREMS FOR 3-POINT BOUNDARY-VALUE PROBLEMS [J].
AFTABIZADEH, AR ;
GUPTA, CP ;
XU, JM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (03) :716-726
[2]   EXISTENCE AND MULTIPLICITY RESULTS FOR NON-LINEAR ELLIPTIC PROBLEMS WITH LINEAR PART AT RESONANCE - CASE OF SIMPLE EIGENVALUE [J].
AMBROSETTI, A ;
MANCINI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (02) :220-245
[3]   EXISTENCE AND MULTIPLICITY RESULTS FOR A CLASS OF NON-LINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS AT RESONANCE [J].
COSTA, DG ;
GONCALVES, JVA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 84 (02) :328-337
[4]  
Fucik S., 1980, SOLVABILITY NONLINEA
[5]  
Gupta C. P., 1989, DIFFERENTIAL INTEGRA, V2, P1
[6]   ON THE STRUCTURE OF THE SOLUTION SET OF NON-LINEAR EQUATIONS [J].
MARTELLI, M ;
VIGNOLI, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (07) :685-693
[7]  
NAGLE RK, 1995, J MATH ANAL APPL, V195, P149
[8]  
OREAGAN DJ, 1987, SIAM J MATH ANAL, V19, P630