Anisotropic nonlinear elliptic systems with variable exponents and degenerate coercivity

被引:12
作者
Mokhtar, Naceri [1 ,2 ,3 ]
Mokhtari, Fares [4 ]
机构
[1] Super Normal Sch Kouba Algiers, Laghouat, Algeria
[2] ENS Kouba, Lab EDPNL HM, Laghouat, Algeria
[3] ENS Laghouat, Laghouat, Algeria
[4] Univ Algiers, Dept Math & Informat, Algiers, Algeria
关键词
Elliptic systems; anisotropic equations; variable exponents; degenerate coercivity; L-1; data; LEBESGUE; SPACES;
D O I
10.1080/00036811.2019.1682136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove existence results for distributional solutions of anisotropic nonlinear elliptic systems with variable growth and degenerate coercivity. The functional setting involves anisotropic Sobolev spaces with variable exponents as well as weak Lebesgue (Marcinkiewicz) spaces with variable exponents.
引用
收藏
页码:2347 / 2367
页数:21
相关论文
共 20 条
  • [1] Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces
    Almeida, A.
    Harjulehto, P.
    Hasto, P.
    Lukkari, T.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) : 405 - 424
  • [2] Ayadi H., 2018, Electron. J. Differ. Equ, V2018, P1
  • [3] Ayadi H, 2019, COMPLEX VAR ELLIPTIC, V45, P1
  • [4] Bendahmane M., 2006, Electr J Differ Equ, V2006, P1
  • [5] Bendahmane M., 2015, Moroccan J Pure Appl Anal, V1, P108, DOI [10.7603/s40956-015-0008-3, DOI 10.7603/S40956-015-0008-3]
  • [6] Variable exponent, linear growth functionals in image restoration
    Chen, Yunmei
    Levine, Stacey
    Rao, Murali
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1383 - 1406
  • [7] Strongly anisotropic elliptic problems with regular and L1 data
    Chrif, Moussa
    El Manouni, Said
    Mokhtari, Fares
    [J]. PORTUGALIAE MATHEMATICA, 2015, 72 (04) : 357 - 391
  • [8] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [9] Non-linear elliptic systems with measure-valued right hand side
    Dolzmann, G
    Hungerbuhler, N
    Muller, S
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (04) : 545 - 574
  • [10] Fan X., 2010, Complex Var. Elliptic Equ, V55, P1