Rough Set Model for Cognitive Expectation Embedded Interval-Valued Decision Systems

被引:1
作者
Dai Jianhua [1 ,2 ]
Liu Zhenbo [1 ]
Hu Hu [2 ]
Shi Hong [1 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Rough set; Interval-valued decision system with cognitive expectation; Attribute reduction; FEATURE-SELECTION;
D O I
10.1049/cje.2017.09.024
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Interval-valued information system is a kind of knowledge representation model for uncertain information. An interval-valued attribute has an expectation by experience or background knowledge, called cognitive expectation. There are few studies aiming at interval-valued attributes with cognitive expectations. We propose the concept of Interval-valued decision system with expectations (IDSE). A new dominance relation based on the distances between expectations and interval values is constructed, Based on the constructed dominance relation, a rough set model for IDSE is investigated. Attribute reduction in IDSE is also examined by using discernibility matrices and discernibility functions.
引用
收藏
页码:675 / 679
页数:5
相关论文
共 50 条
  • [41] A four-way decision-making approach using interval-valued fuzzy sets, rough set and granular computing: a new approach in data classification and decision-making
    Singh, Pritpal
    Huang, Yo-Ping
    [J]. GRANULAR COMPUTING, 2020, 5 (03) : 397 - 409
  • [42] A four-way decision-making approach using interval-valued fuzzy sets, rough set and granular computing: a new approach in data classification and decision-making
    Pritpal Singh
    Yo-Ping Huang
    [J]. Granular Computing, 2020, 5 : 397 - 409
  • [43] Feature selections based on three improved condition entropies and one new similarity degree in interval-valued decision systems
    Chen, Benwei
    Zhang, Xianyong
    Yang, Jilin
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [44] Approaches to knowledge reduction based on interval and set-valued decision information systems
    Wang, H.
    Gao, R.
    Wang, X. Q.
    [J]. COMPUTING, CONTROL, INFORMATION AND EDUCATION ENGINEERING, 2015, : 765 - 768
  • [45] Fuzzy rough set model for set-valued data
    Dai, Jianhua
    Tian, Haowei
    [J]. FUZZY SETS AND SYSTEMS, 2013, 229 : 54 - 68
  • [46] Feature selection for a set-valued decision information system based on fuzzy rough iterative computation model
    Peng, Yichun
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2022, 51 (02) : 185 - 213
  • [47] Probability Rough Set Model Based on the Semantic in Set-Valued Information System
    Suo Zhongying
    Cheng Siyi
    Ren Linshen
    [J]. 2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 1244 - 1249
  • [48] Dynamic variable precision rough set approach for probabilistic set-valued information systems
    Huang, Yanyong
    Li, Tianrui
    Luo, Chuan
    Fujita, Hamido
    Horng, Shi-jinn
    [J]. KNOWLEDGE-BASED SYSTEMS, 2017, 122 : 131 - 147
  • [49] Unsupervised attribute reduction based on α-approximate equal relation in interval-valued information systems
    Liu, Xiaofeng
    Dai, Jianhua
    Chen, Jiaolong
    Zhang, Chucai
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (09) : 2021 - 2038
  • [50] A note on a fuzzy rough set model for set-valued data
    Wang, Chun Yong
    [J]. FUZZY SETS AND SYSTEMS, 2016, 294 : 44 - 47