Unexpected Information Leakage of Differential Privacy Due to the Linear Property of Queries

被引:5
|
作者
Huang, Wen [1 ]
Zhou, Shijie [1 ]
Liao, Yongjian [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
关键词
Privacy; Differential privacy; Sensitivity; Correlation; Testing; National Institutes of Health; Switches; Laplace mechanism; membership inference attacks; differential privacy; linear property;
D O I
10.1109/TIFS.2021.3075843
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Differential privacy is a widely accepted concept of privacy preservation, and the Laplace mechanism is a famous instance of differentially private mechanisms used to deal with numerical data. In this paper, we find that differential privacy does not take the linear property of queries into account, resulting in unexpected information leakage. Specifically, the linear property makes it possible to divide one query into two queries, such as q(D) = q(D-1)+ q(D-2) if D = D-1 boolean OR D-2 and D-1 boolean OR D-2 = phi. If attackers try to obtain an answer to q(D), they can not only issue the query q(D) but also issue q(D-1) and calculate q(D-2) by themselves as long as they know D-2. Through different divisions of one query, attackers can obtain multiple different answers to the same query from differentially private mechanisms. However, from the attackers' perspective and differentially private mechanisms' perspective, the total consumed privacy budget is different if divisions are delicately designed. This difference leads to unexpected information leakage because the privacy budget is the key parameter for controlling the amount of information that is legally released from differentially private mechanisms. To demonstrate unexpected information leakage, we present a membership inference attack against the Laplace mechanism. Specifically, under the constraints of differential privacy, we propose a method for obtaining multiple independent identically distributed samples of answers to queries that satisfy the linear property. The proposed method is based on a linear property and some background knowledge of the attackers. When the background knowledge is sufficient, the proposed method can obtain a sufficient number of samples from differentially private mechanisms such that the total consumed privacy budget can be made unreasonably large. Based on the obtained samples, a hypothesis testing method is used to determine whether a target record is in a target dataset.
引用
收藏
页码:3123 / 3137
页数:15
相关论文
共 50 条
  • [11] Distributed Linear Bandits With Differential Privacy
    Li, Fengjiao
    Zhou, Xingyu
    Ji, Bo
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (03): : 3161 - 3173
  • [12] Orthogonal Mechanism for Answering Batch Queries with Differential Privacy
    Huang, Dong
    Han, Shuguo
    Li, Xiaoli
    Yu, Philip S.
    PROCEEDINGS OF THE 27TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, 2015,
  • [13] Bayesian Differential Privacy for Linear Dynamical Systems
    Sugiura, Genki
    Ito, Kaito
    Kashima, Kenji
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 896 - 901
  • [14] The Laplace Mechanism has optimal utility for differential privacy over continuous queries
    Fernandes, Natasha
    McIver, Annabelle
    Morgan, Carroll
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [15] The optimal upper bound of the number of queries for Laplace mechanism under differential privacy
    Li, Xiaoguang
    Li, Hui
    Zhu, Hui
    Huang, Muyang
    INFORMATION SCIENCES, 2019, 503 : 219 - 237
  • [16] Quantifying privacy leakage through answering database queries
    Hsu, TS
    Liau, CJ
    Wang, DW
    Chen, JKP
    INFORMATION SECURITY, PROCEEDINGS, 2002, 2433 : 162 - 176
  • [17] Anti-Leakage Method of Sensitive Information of Network Documents Based on Differential Privacy Model
    Su, Shuhui
    Luo, Yonghan
    Li, Tao
    Chen, Qi
    Liang, Juntao
    SECURITY AND PRIVACY, 2025, 8 (01):
  • [18] Differential Privacy for Information Retrieval
    Yang, Grace Hui
    Zhang, Sicong
    ICTIR'17: PROCEEDINGS OF THE 2017 ACM SIGIR INTERNATIONAL CONFERENCE THEORY OF INFORMATION RETRIEVAL, 2017, : 325 - 326
  • [19] A Graph Symmetrization Bound on Channel Information Leakage Under Blowfish Privacy
    Edwards, Tobias
    Rubinstein, Benjamin I. P.
    Zhang, Zuhe
    Zhou, Sanming
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 538 - 548
  • [20] Interactive Range Queries for Healthcare Data under Differential Privacy
    Alnemari, Asma
    Raj, Rajendra K.
    Romanowski, Carol J.
    Mishra, Sumita
    2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021), 2021, : 228 - 237