Inferring the global cosmic dust influx to the Earth's atmosphere from lidar observations of the vertical flux of mesospheric Na

被引:49
作者
Gardner, Chester S. [1 ]
Liu, Alan Z. [2 ]
Marsh, D. R. [3 ]
Feng, Wuhu [4 ]
Plane, J. M. C. [4 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61820 USA
[2] Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL USA
[3] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA
[4] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England
基金
欧洲研究理事会; 美国国家科学基金会; 中国国家自然科学基金;
关键词
STARFIRE OPTICAL-RANGE; DISSIPATING GRAVITY-WAVES; MESOPAUSE REGION; INPUT FUNCTION; CHEMICAL-MODEL; NEW-MEXICO; TRANSPORT; FLUCTUATIONS; ACCRETION; ABLATION;
D O I
10.1002/2014JA020383
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Estimates of the global influx of cosmic dust are highly uncertain, ranging from 0.4-110 t/d. All meteoric debris that enters the Earth's atmosphere is eventually transported to the surface. The downward fluxes of meteoric metals like mesospheric Na and Fe, in the region below where they are vaporized and where the majority of these species are still in atomic form, are equal to their meteoric ablation influxes, which in turn, are proportional to the total cosmic dust influx. Doppler lidar measurements of mesospheric Na fluxes made throughout the year at the Starfire Optical Range, New Mexico, (35 degrees N) are combined with the Whole Atmosphere Community Climate Model predictions of the relative geographic variations of the key wave-induced vertical transport processes to infer the global influxes of Na vapor and cosmic dust. The global mean Na influx is estimated to be 16,100 +/- 3200 atoms/cm(2)/s, which corresponds to 278 +/- 54 kg/d for the global input of Na vapor and 60 +/- 16 t/d for the global influx of cosmic dust.
引用
收藏
页码:7870 / 7879
页数:10
相关论文
共 43 条
  • [1] Andrews D., 1987, INT GEOPHYS
  • [2] [Anonymous], 2009, Landolt-Bornstein-Group VI Astronomy and Astrophysics 4B
  • [3] Baggaley WJ, 2002, METEORS IN THE EARTH'S ATMOSPHERE, P123
  • [4] ATMOSPHERIC COMPOSITION IN LOWER THERMOSPHERE
    COLEGROVE, FD
    JOHNSON, FS
    HANSON, WB
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (09): : 2227 - +
  • [5] Ablation, flux, and atmospheric implications of meteors inferred from stratospheric aerosol
    Cziczo, DJ
    Thomson, DS
    Murphy, DM
    [J]. SCIENCE, 2001, 291 (5509) : 1772 - 1775
  • [6] Plutonium-238 observations as a test of modeled transport and surface deposition of meteoric smoke particles
    Dhomse, S. S.
    Saunders, R. W.
    Tian, W.
    Chipperfield, M. P.
    Plane, J. M. C.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (16) : 4454 - 4458
  • [7] A global atmospheric model of meteoric iron
    Feng, Wuhu
    Marsh, Daniel R.
    Chipperfield, Martyn P.
    Janches, Diego
    Hoeffner, Josef
    Yi, Fan
    Plane, John M. C.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (16) : 9456 - 9474
  • [8] A semi-empirical model of the contribution from sporadic meteoroid sources on the meteor input function in the MLT observed at Arecibo
    Fentzke, Jonathan T.
    Janches, Diego
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A3)
  • [9] A global climatology of the mesospheric sodium layer from GOMOS data during the 2002-2008 period
    Fussen, D.
    Vanhellemont, F.
    Tetard, C.
    Mateshvili, N.
    Dekemper, E.
    Loodts, N.
    Bingen, C.
    Kyrola, E.
    Tamminen, J.
    Sofieva, V.
    Hauchecorne, A.
    Dalaudier, F.
    Bertaux, J-L
    Barrot, G.
    Blanot, L.
    d'Andon, O. Fanton
    Fehr, T.
    Saavedra, L.
    Yuan, T.
    She, C-Y
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (19) : 9225 - 9236
  • [10] Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice
    Gabrielli, P
    Barbante, C
    Plane, JMC
    Varga, A
    Hong, S
    Cozzi, G
    Gaspari, V
    Planchon, FAM
    Cairns, W
    Ferrari, C
    Crutzen, P
    Cescon, P
    Boutron, CF
    [J]. NATURE, 2004, 432 (7020) : 1011 - 1014