A heat transfer with a source: the complete set of invariant difference schemes

被引:27
作者
Dorodnitsyn, V
Kozlov, R
机构
[1] MV Keldysh Appl Math Inst, Moscow 125047, Russia
[2] Univ Oslo, Dept Informat, N-0371 Oslo, Norway
关键词
D O I
10.2991/jnmp.2003.10.1.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter we present the set of invariant difference equations and meshes which preserve the Lie group symmetries of the equation u(t) = (K (u) u(x))(x) + Q (u). All special cases o K (u) and Q (u) that extend the symmetry group admitted by the differential equation are considered. This paper completes the paper [J. Phys. A: Math. Gen. 30, Nr. 23 (1997), 8139-8155], where a few invariant models or heat transfer equations were presented.
引用
收藏
页码:16 / 50
页数:35
相关论文
共 20 条
[1]  
[Anonymous], 1982, ZH VYCH MATEMAT MATE
[2]  
[Anonymous], 1994, CRC HDB LIE GROUP AN
[3]   Symmetry-preserving difference schemes for some heat transfer equations [J].
Bakirova, MI ;
Dorodnitsyn, VA ;
Kozlov, RV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :8139-8155
[4]   Symmetry-adapted moving mesh schemes for the nonlinear Schrodinger equation [J].
Budd, C ;
Dorodnitsyn, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10387-10400
[5]   An invariant moving mesh scheme for the nonlinear diffusion equation [J].
Budd, CJ ;
Collins, GJ .
APPLIED NUMERICAL MATHEMATICS, 1998, 26 (1-2) :23-39
[6]   Lie point symmetry preserving discretizations for variable coefficient Korteweg-de Vries equations [J].
Dorodnitsyn, V ;
Winternitz, P .
NONLINEAR DYNAMICS, 2000, 22 (01) :49-59
[7]   Lie group classification of second-order ordinary difference equations [J].
Dorodnitsyn, V ;
Kozlov, R ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (01) :480-504
[8]   Noether-type theorems for difference equations [J].
Dorodnitsyn, V .
APPLIED NUMERICAL MATHEMATICS, 2001, 39 (3-4) :307-321
[9]  
DORODNITSYN V, 2001, LIE GROUP PROPERTIES
[10]  
DORODNITSYN V, 1994, CRM2187 U MONTR