Quasi-Freestanding Monolayer Heterostructure of Graphene and Hexagonal Boron Nitride on Ir(111) with a Zigzag Boundary

被引:121
作者
Liu, Mengxi [1 ]
Li, Yuanchang [2 ]
Chen, Pengcheng [2 ]
Sun, Jingyu [1 ]
Ma, Donglin [1 ]
Li, Qiucheng [1 ]
Gao, Teng [1 ]
Gao, Yabo [1 ]
Cheng, Zhihai [2 ]
Qiu, Xiaohui [2 ]
Fang, Ying [2 ]
Zhang, Yanfeng [1 ,3 ]
Liu, Zhongfan [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Coll Chem & Mol Engn, Ctr Nanochem CNC,Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[3] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
STM; graphene; h-BN; in-plane heterostructure; boundary type; INPLANE HETEROSTRUCTURES; TRANSITION; GROWTH; LAYERS; FOILS;
D O I
10.1021/nl502780u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In-plane heterostructure of hexagonal boron nitride and graphene (h-BN-G) has become a focus of graphene research owing to its tunable bandgap and intriguing properties. We report herein the synthesis of a quasi-freestanding h-BN-G monolayer heterostructure on a weakly coupled Ir(111) substrate, where graphene and h-BN possess distinctly different heights and surface corrugations. An atomically sharp zigzag type boundary has been found to dominate the patching interface between graphene and h-BN, as evidenced by high-resolution Scanning tunneling microscopy investigation as well as density functional theory calculation. Scanning tunneling spectroscopy studies indicate that the graphene and h-BN tend to exhibit their own intrinsic electronic features near the patching boundary. The present work offers a deep insight into the h-BN-graphene boundary structures both geometrically and electronically together with the effect of adlayer-substrate coupling.
引用
收藏
页码:6342 / 6347
页数:6
相关论文
共 38 条
[1]   Quantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride [J].
Bhowrnick, Somnath ;
Singh, Abhishek K. ;
Yakobson, Boris I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (20) :9889-9893
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[4]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[5]   Growth of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Engler, Martin ;
Busse, Carsten ;
Wall, Dirk ;
Buckanie, Niemma ;
Heringdorf, Frank-j Meyer Zu ;
van Gastel, Raoul ;
Poelsema, Bene ;
Michely, Thomas .
NEW JOURNAL OF PHYSICS, 2009, 11
[6]   Electronic States at the Graphene-Hexagonal Boron Nitride Zigzag Interface [J].
Drost, Robert ;
Uppstu, Andreas ;
Schulz, Fabian ;
Hamalainen, Sampsa K. ;
Ervasti, Mikko ;
Harju, Ari ;
Liljeroth, Peter .
NANO LETTERS, 2014, 14 (09) :5128-5132
[7]   The formation of an energy gap in graphene on ruthenium by controlling the interface [J].
Enderlein, C. ;
Kim, Y. S. ;
Bostwick, A. ;
Rotenberg, E. ;
Horn, K. .
NEW JOURNAL OF PHYSICS, 2010, 12
[8]   Toward Single-Layer Uniform Hexagonal Boron Nitride-Graphene Patchworks with Zigzag Linking Edges [J].
Gao, Yabo ;
Zhang, Yanfeng ;
Chen, Pengcheng ;
Li, Yuanchang ;
Liu, Mengxi ;
Gao, Teng ;
Ma, Donglin ;
Chen, Yubin ;
Cheng, Zhihai ;
Qju, Xiaohui ;
Duan, Wenhui ;
Liu, Zhongfan .
NANO LETTERS, 2013, 13 (07) :3439-3443
[9]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[10]   Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition [J].
Han, Gang Hee ;
Rodriguez-Manzo, Julio A. ;
Lee, Chan-Woo ;
Kybert, Nicholas J. ;
Lerner, Mitchell B. ;
Qi, Zhengqing John ;
Dattoli, Eric N. ;
Rappe, Andrew M. ;
Drndic, Marija ;
Johnson, A. T. Charlie .
ACS NANO, 2013, 7 (11) :10129-10138