Center conditions III: Parametric and model center problems

被引:40
作者
Briskin, M
Francoise, JP
Yomdin, Y
机构
[1] Jerusalem Coll Engn, IL-91035 Jerusalem, Israel
[2] Univ Paris 06, Dept Math, F-75252 Paris, France
[3] Weizmann Inst Sci, Dept Theoret Math, IL-76100 Rehovot, Israel
关键词
D O I
10.1007/BF02803517
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an Abel equation (*) y' = p(X)y(2) + q(x)y(3) with p(x), q(x) polynomials in x. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is that y(0) = y(0) = y(1) for any solution y(x) of (*). Following [7], we consider a parametric version of this condition: an equation (**) y' = p(x)y(2) + epsilon q(x)y(3), p, q as above, epsilon is an element of C, is said to have a parametric center, if for any epsilon and for any solution y(epsilon, x) of (**) y(epsilon, 0) = (epsilon, 1). We give another proof of the fact, shown in [6], that the parametric center condition implies vanishing of all the moments m(k)(1), where m(k)(x) = integral(0)(x) P-k(t)q(t)dt, P(x) = integral(0)(x) p(t)dt. We investigate the structure of zeroes of m(k)(x) and generalize a "canonical representation" of m(k)(x) given in [7]. On this base we prove in some additional cases a composition conjecture, stated in [6, 7] for a parametric center problem.
引用
收藏
页码:83 / 108
页数:26
相关论文
共 10 条
[1]   NONAUTONOMOUS EQUATIONS RELATED TO POLYNOMIAL TWO-DIMENSIONAL SYSTEMS [J].
ALWASH, MAM ;
LLOYD, NG .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 105 :129-152
[2]   PERIODIC-SOLUTIONS OF A QUARTIC NONAUTONOMOUS EQUATION [J].
ALWASH, MAM ;
LLOYD, NG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (07) :809-820
[4]   The Bautin ideal of the Abel equation [J].
Briskin, M ;
Francoise, JP ;
Yomdin, Y .
NONLINEARITY, 1998, 11 (03) :431-443
[5]   Center conditions, compositions of polynomials and moments on algebraic curves [J].
Briskin, M ;
Francoise, JP ;
Yomdin, Y .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :1201-1220
[6]  
BRISKIN M, UNPUB ALGEBRA MODEL
[7]   Small-amplitude limit cycles in polynomial Lienard systems [J].
Christopher, Colin J. ;
Lloyd, Noel G. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (02) :183-190
[8]   WORD-PROBLEMS RELATED TO DERIVATIVES OF THE DISPLACEMENT MAP [J].
DEVLIN, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 110 :569-579
[9]   WORD-PROBLEMS RELATED TO PERIODIC-SOLUTIONS OF A NONAUTONOMOUS SYSTEM [J].
DEVLIN, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 108 :127-151
[10]  
Lins Neto A., 1980, INVENT MATH, V59, P67