Evolution and functional diversity of abiotic stress-responsive NAC transcription factor genes in Linum usitatissimum L

被引:13
|
作者
Saha, Dipnarayan [1 ]
Shaw, Arun Kumar [1 ]
Datta, Subhojit [1 ]
Mitra, Jiban [1 ]
机构
[1] ICAR Cent Res Inst Jute & Allied Fibres, Kolkata 700121, West Bengal, India
关键词
Abiotic stress; Flax; Genome-wide analysis; NAC genes; Transcription factors; GENOME-WIDE ANALYSIS; EXPRESSION ANALYSIS; FACTOR FAMILY; COMPREHENSIVE ANALYSIS; DIFFERENTIAL GENE; FIBER DEVELOPMENT; ARABIDOPSIS; PROTEIN; TOLERANCE; SALT;
D O I
10.1016/j.envexpbot.2021.104512
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Global cultivation of flax fibre and oilseed is sparse due to poor climatic adaptability. Abiotic stresses, such as drought, salinity, and heat stress are the major limiting factors of flax cultivation. Varieties tolerant to biotic and abiotic stresses are the need of the hour with a sustainable high and stable yield. Exploring candidate genes to provide wider climatic adaptability in flax is of paramount importance. The present study delineates a detailed annotation of 164 Linum usitatissimum NAC-domain transcription factor genes (LuNACs) that are scattered across all 15 chromosomes. Phylogeny-wise majority of the LuNAC proteins were categorized into recognized NAC groups. Few LuNACs remain distinct, suggesting their species-specific expansion. Analysis of the LuNAC gene and protein domain architectures established their conserved nature and support the phylogenetic grouping. The homologs of LuNAC genes revealed their expansion because of whole-genome duplication events. Potential target sites of miRNA families, including the miRNA164, were identified in LuNAC genes, suggesting that a complex regulatory mechanism might be associated with abiotic stress tolerance in flax. In silico gene expression, deep GO analysis, functional inference from homologs, and RT-qPCR of selected LuNAC genes revealed their functional involvement in growth and development and in response to diverse abiotic stresses in flax. The LuNAC003 gene from the senescence-related subfamily was responsive to multiple stress conditions. All the above findings on LuNAC genes may promote them as candidate genes for further functional studies or utilize them in flax genetic improvement programs for improved fibre and seed oil productions, even under adverse environmental conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] The NAC transcription factor LuNAC61 negatively regulates fiber development in flax (Linum usitatissimum L.)
    Dongwei Xie
    Jing Li
    Wan Li
    Lijun Sun
    Zhigang Dai
    Wenzhi Zhou
    Jianguang Su
    Jian Sun
    Journal of Integrative Agriculture, 2024, 23 (03) : 795 - 805
  • [22] The NAC transcription factor LuNAC61 negatively regulates fiber development in flax ( Linum usitatissimum L.)
    Xie, Dongwei
    Li, Jing
    Li, Wan
    Sun, Lijun
    Dai, Zhigang
    Zhou, Wenzhi
    Su, Jianguang
    Sun, Jian
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2024, 23 (03) : 795 - 805
  • [23] The Transcription Factor StuA Regulates Oxidative Stress-Responsive Genes in Trichophyton rubrum
    Petrucelli, Monise Fazolin
    Martins-Santana, Leonardo
    Oliveira, Vanderci M.
    Sanches, Pablo R.
    Rossi, Antonio
    Martinez-Rossi, Nilce M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (23)
  • [24] The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants
    Yoon, Youngdae
    Seo, Deok Hyun
    Shin, Hoyoon
    Kim, Hui Jin
    Kim, Chul Min
    Jang, Geupil
    AGRONOMY-BASEL, 2020, 10 (06):
  • [25] Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco
    Wang, Yiping
    Cui, Ying
    Liu, Bin
    Wang, Ying
    Sun, Shaoying
    Wang, Jingwen
    Tan, Mengmeng
    Yan, Hao
    Zhang, Yanni
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [26] ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis
    Xi, Yan
    Ling, Qiqi
    Zhou, Yue
    Liu, Xiang
    Qian, Yexiong
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [27] Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis
    Shinde, Harshraj
    Dudhate, Ambika
    Tsugama, Daisuke
    Gupta, Shashi K.
    Liu, Shenkui
    Takano, Tetsuo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 135 : 546 - 553
  • [28] Isolation, Expression Analysis, and Function Evaluation of 12 Novel Stress-Responsive Genes of NAC Transcription Factors in Sweetpotato
    Meng, Xiaoqing
    Li, Ge
    Yu, Jing
    Cai, Jing
    Dong, Tingting
    Sun, Jian
    Xu, Tao
    Li, Zongyun
    Pan, Shenyuan
    Ma, Daifu
    Zhu, Mingku
    CROP SCIENCE, 2018, 58 (03) : 1328 - 1341
  • [29] Identification of novel stress-responsive transcription factor genes in rice by cDNA array analysis
    Wu, Cong-Qing
    Hu, Hong-Hong
    Zeng, Ya
    Liang, Da-Cheng
    Xie, Ka-Bin
    Zhang, Jian-Wei
    Chu, Zhao-Hui
    Xiong, Li-Zhong
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2006, 48 (10) : 1216 - 1224
  • [30] ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis
    Mao, Hude
    Yu, Lijuan
    Han, Ran
    Li, Zhanjie
    Liu, Hui
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 105 : 55 - 66