Evolution and functional diversity of abiotic stress-responsive NAC transcription factor genes in Linum usitatissimum L

被引:13
|
作者
Saha, Dipnarayan [1 ]
Shaw, Arun Kumar [1 ]
Datta, Subhojit [1 ]
Mitra, Jiban [1 ]
机构
[1] ICAR Cent Res Inst Jute & Allied Fibres, Kolkata 700121, West Bengal, India
关键词
Abiotic stress; Flax; Genome-wide analysis; NAC genes; Transcription factors; GENOME-WIDE ANALYSIS; EXPRESSION ANALYSIS; FACTOR FAMILY; COMPREHENSIVE ANALYSIS; DIFFERENTIAL GENE; FIBER DEVELOPMENT; ARABIDOPSIS; PROTEIN; TOLERANCE; SALT;
D O I
10.1016/j.envexpbot.2021.104512
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Global cultivation of flax fibre and oilseed is sparse due to poor climatic adaptability. Abiotic stresses, such as drought, salinity, and heat stress are the major limiting factors of flax cultivation. Varieties tolerant to biotic and abiotic stresses are the need of the hour with a sustainable high and stable yield. Exploring candidate genes to provide wider climatic adaptability in flax is of paramount importance. The present study delineates a detailed annotation of 164 Linum usitatissimum NAC-domain transcription factor genes (LuNACs) that are scattered across all 15 chromosomes. Phylogeny-wise majority of the LuNAC proteins were categorized into recognized NAC groups. Few LuNACs remain distinct, suggesting their species-specific expansion. Analysis of the LuNAC gene and protein domain architectures established their conserved nature and support the phylogenetic grouping. The homologs of LuNAC genes revealed their expansion because of whole-genome duplication events. Potential target sites of miRNA families, including the miRNA164, were identified in LuNAC genes, suggesting that a complex regulatory mechanism might be associated with abiotic stress tolerance in flax. In silico gene expression, deep GO analysis, functional inference from homologs, and RT-qPCR of selected LuNAC genes revealed their functional involvement in growth and development and in response to diverse abiotic stresses in flax. The LuNAC003 gene from the senescence-related subfamily was responsive to multiple stress conditions. All the above findings on LuNAC genes may promote them as candidate genes for further functional studies or utilize them in flax genetic improvement programs for improved fibre and seed oil productions, even under adverse environmental conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L.
    Xueyang Min
    Xiaoyu Jin
    Zhengshe Zhang
    Xingyi Wei
    Boniface Ndayambaza
    Yanrong Wang
    Wenxian Liu
    Journal of Plant Growth Regulation, 2020, 39 : 324 - 337
  • [2] Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L.
    Min, Xueyang
    Jin, Xiaoyu
    Zhang, Zhengshe
    Wei, Xingyi
    Ndayambaza, Boniface
    Wang, Yanrong
    Liu, Wenxian
    JOURNAL OF PLANT GROWTH REGULATION, 2020, 39 (01) : 324 - 337
  • [3] The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice
    Hironori Takasaki
    Kyonoshin Maruyama
    Satoshi Kidokoro
    Yusuke Ito
    Yasunari Fujita
    Kazuo Shinozaki
    Kazuko Yamaguchi-Shinozaki
    Kazuo Nakashima
    Molecular Genetics and Genomics, 2010, 284 : 173 - 183
  • [4] The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice
    Takasaki, Hironori
    Maruyama, Kyonoshin
    Kidokoro, Satoshi
    Ito, Yusuke
    Fujita, Yasunari
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    Nakashima, Kazuo
    MOLECULAR GENETICS AND GENOMICS, 2010, 284 (03) : 173 - 183
  • [5] Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice
    Nakashima, Kazuo
    Tran, Lam-Son Phan
    Nguyen, Dong Van
    Fujita, Miki
    Maruyama, Kyonoshin
    Todaka, Daisuke
    Ito, Yusuke
    Hayashi, Nagao
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    PLANT AND CELL PHYSIOLOGY, 2007, 48 : S106 - S106
  • [6] Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice
    Nakashima, Kazuo
    Tran, Lam-Son P.
    Nguyen, Dong Van
    Fujita, Miki
    Maruyama, Kyonoshin
    Todaka, Daisuke
    Ito, Yusuke
    Hayashi, Nagao
    Shinozaki, Kazuo
    Yamaguchi-Shinozaki, Kazuko
    PLANT JOURNAL, 2007, 51 (04): : 617 - 630
  • [7] The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.)
    Wang, Lingling
    Hu, Zongli
    Zhu, Mingku
    Zhu, Zhiguo
    Hu, Jingtao
    Qanmber, Ghulam
    Chen, Guoping
    PLANT CELL TISSUE AND ORGAN CULTURE, 2017, 129 (01) : 161 - 174
  • [8] The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.)
    Lingling Wang
    Zongli Hu
    Mingku Zhu
    Zhiguo Zhu
    Jingtao Hu
    Ghulam Qanmber
    Guoping Chen
    Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 129 : 161 - 174
  • [9] Aluminum Responsive Genes in Flax (Linum usitatissimum L.)
    Krasnov, George S.
    Dmitriev, Alexey A.
    Zyablitsin, Alexander V.
    Rozhmina, Tatiana A.
    Zhuchenko, Alexander A.
    Kezimana, Parfait
    Snezhkina, Anastasiya V.
    Fedorova, Maria S.
    Novakovskiy, Roman O.
    Pushkova, Elena N.
    Povkhova, Liubov V.
    Bolsheva, Nadezhda L.
    Kudryavtseva, Anna V.
    Melnikova, Nataliya V.
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [10] Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes
    Parinita Agarwal
    Pradeep K. Agarwal
    Arvind J. Joshi
    Sudhir K. Sopory
    Malireddy K. Reddy
    Molecular Biology Reports, 2010, 37