Global hypersurfaces of section in the spatial restricted three-body problem

被引:2
作者
Moreno, Agustin [1 ,2 ]
van Koert, Otto [3 ,4 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Seoul Natl Univ, Dept Math Sci, Bldg 27,Room 402,San 56-1, Seoul 08826, South Korea
[4] Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402,San 56-1, Seoul 08826, South Korea
关键词
restricted three-body problem; celestial mechanics; Hamiltonian dynamics; symplectic geometry; global surfaces of section; PERIODIC-ORBITS;
D O I
10.1088/1361-6544/ac692b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a contact-topological approach to the spatial circular restricted three-body problem, for energies below and slightly above the first critical energy value. We prove the existence of a circle family of global hypersurfaces of section for the regularized dynamics. Below the first critical value, these hypersurfaces are diffeomorphic to the unit disk cotangent bundle of the two-sphere, and they carry symplectic forms on their interior, which are each deformation equivalent to the standard symplectic form. The boundary of the global hypersurface of section is an invariant set for the regularized dynamics that is equal to a level set of the Hamiltonian describing the regularized planar problem. The first return map is Hamiltonian, and restricts to the boundary as the time-1 map of a positive reparameterization of the Reeb flow in the planar problem. This construction holds for any choice of mass ratio, and is therefore non-perturbative. We illustrate the technique in the completely integrable case of the rotating Kepler problem, where the return map can be studied explicitly.
引用
收藏
页码:2920 / 2970
页数:51
相关论文
共 27 条
  • [1] Acu B., 2020, ARXIV200602940
  • [2] Acu B., 2017, ARXIV171007724
  • [3] Planarity in Higher-Dimensional Contact Manifolds
    Acu, Bahar
    Moreno, Agustin
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (06) : 4222 - 4258
  • [4] The Conley-Zehnder indices of the rotating Kepler problem
    Albers, Peter
    Fish, Joel W.
    Frauenfelder, Urs
    Van Koert, Otto
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 154 (02) : 243 - 260
  • [5] Global Surfaces of Section in the Planar Restricted 3-Body Problem
    Albers, Peter
    Fish, Joel W.
    Frauenfelder, Urs
    Hofer, Helmut
    van Koert, Otto
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) : 273 - 284
  • [6] Contact geometry of the restricted three-body problem
    Albers, Peter
    Frauenfelder, Urs
    Van Koert, Otto
    Paternain, Gabriel P.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (02) : 229 - 263
  • [7] A NEW FAMILY OF PERIODIC-ORBITS FOR THE RESTRICTED PROBLEM
    BELBRUNO, EA
    [J]. CELESTIAL MECHANICS, 1981, 25 (02): : 195 - 217
  • [8] The contact geometry of the spatial circular restricted 3-body problem
    Cho, WanKi
    Jung, Hyojin
    Kim, GeonWoo
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2020, 90 (02): : 161 - 181
  • [9] Cieliebak K., 2019, ARXIV191004570
  • [10] Periodic Orbits in the Restricted Three-body Problem and Arnold's J+-invariant
    Cieliebak, Kai
    Frauenfelder, Urs
    van Koert, Otto
    [J]. REGULAR & CHAOTIC DYNAMICS, 2017, 22 (04) : 408 - 434