On radial solutions for Monge-Ampere equations

被引:6
作者
Liu, Ronghua [1 ]
Wang, Fanglei [1 ]
An, Yukun [2 ]
机构
[1] Hohai Univ, Coll Sci, Dept Math, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing, Jiangsu, Peoples R China
关键词
Monge-Ampere equations; radial solution; uniqueness and multiplicity; fixed point theorem; BOUNDARY-VALUE-PROBLEMS; CONVEX SOLUTIONS; EXISTENCE; SYSTEM;
D O I
10.3906/mat-1708-44
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper,we obtain some new existence, uniqueness, and multiplicity results of radial solutions of an elliptic system coupled by Monge-Ampere equations using the fixed point theorem.
引用
收藏
页码:1590 / 1609
页数:20
相关论文
共 17 条
[1]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[2]   Existence of convex solutions for systems of Monge-Ampere equations [J].
Gao, Min ;
Wang, Fanglei .
BOUNDARY VALUE PROBLEMS, 2015,
[3]   Classical solutions of singular Monge-Ampere equations in a ball [J].
Goncalves, J ;
Santos, CAP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (01) :240-252
[4]  
Guo D., 1988, NONLINEAR PROBLEMS A
[5]  
Gutierrez C., 2000, MONGE AMPERE EQUATIO
[6]  
Hu SC, 2006, DISCRETE CONT DYN-A, V16, P705
[8]   Radially symmetric convex solutions for Dirichlet problems of Monge-Ampere equations [J].
Liang, Zaitao ;
Chu, Jifeng .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (12) :3426-3433
[9]   2 REMARKS ON MONGE-AMPERE EQUATIONS [J].
LIONS, PL .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1985, 142 :263-275