Plate geometries for contact resonance atomic force microscopy: Modeling, optimization, and verification

被引:6
|
作者
Aureli, Matteo [1 ]
Ahsan, Syed N. [1 ]
Shihab, Rafiul H. [1 ]
Tung, Ryan C. [1 ]
机构
[1] Univ Nevada, Dept Mech Engn, Reno 1664 N Virginia St, Reno, NV 89557 USA
基金
美国国家科学基金会;
关键词
ACOUSTIC MICROSCOPY; ELASTIC PROPERTIES;
D O I
10.1063/1.5038727
中图分类号
O59 [应用物理学];
学科分类号
摘要
A novel contact resonance atomic force microscopy (CR-AFM) method utilizing a two-dimensional Kirchhoff-Love plate framework is presented. Theoretical formulations are discussed, and the classic CR-AFM problem is re-cast into an easily implementable generalized eigenvalue problem. An analysis is performed to determine the optimal placement of the sensing tip for plates of different aspect ratios. Finally, an experiment is conducted using the finite element method to numerically verify the proposed technique. By using a plate geometry for CR-AFM and optimizing the sensor tip location, we achieve a higher measurement sensitivity and modal density when compared with standard AFM cantilever geometries. A higher modal density allows CR-AFM measurement to be conducted using more information extracting eigenmodes in a given frequency bandwidth. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy
    Rosenberger, Matthew R.
    Chen, Sihan
    Prater, Craig B.
    King, William P.
    NANOTECHNOLOGY, 2017, 28 (04)
  • [22] Continuous Measurement of Atomic Force Microscope Tip Wear by Contact Resonance Force Microscopy
    Killgore, Jason P.
    Geiss, Roy H.
    Hurley, Donna C.
    SMALL, 2011, 7 (08) : 1018 - 1022
  • [23] CONTACT STIFFNESS CALIBRATION PLATFORM FOR NANOMECHANICAL PROPERTY MEASUREMENTS WITH CONTACT RESONANCE ATOMIC FORCE MICROSCOPY
    Rosenberger, M. R.
    Chen, S.
    Prater, C. B.
    King, W. P.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1235 - 1238
  • [24] Nanoscale-resolved elasticity: contact mechanics for quantitative contact resonance atomic force microscopy
    Jakob, A. M.
    Buchwald, J.
    Rauschenbach, B.
    Mayr, S. G.
    NANOSCALE, 2014, 6 (12) : 6898 - 6910
  • [25] Measurement of Viscoelastic Loss Tangent with Contact Resonance Modes of Atomic Force Microscopy
    Hurley, Donna C.
    Campbell, Sara E.
    Killgore, Jason P.
    Cox, Lewis M.
    Ding, Yifu
    MACROMOLECULES, 2013, 46 (23) : 9396 - 9402
  • [26] Measurement of Poisson's ratio with contact-resonance atomic force microscopy
    Hurley, D. C.
    Turner, J. A.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (03)
  • [27] Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy
    Wagner, Ryan
    Moon, Robert J.
    Raman, Arvind
    CELLULOSE, 2016, 23 (02) : 1031 - 1041
  • [28] Multifunctional cantilevers for simultaneous enhancement of contact resonance and harmonic atomic force microscopy
    Wang, Wenting
    Zhang, Kaidi
    Zhang, Wenhao
    Hou, Yaoping
    Chen, Yuhang
    NANOTECHNOLOGY, 2021, 32 (29)
  • [29] Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy
    Yablon, Dalia G.
    Gannepalli, Anil
    Proksch, Roger
    Killgore, Jason
    Hurley, Donna C.
    Grabowski, Jean
    Tsou, Andy H.
    MACROMOLECULES, 2012, 45 (10) : 4363 - 4370
  • [30] Stick-to-sliding transition in contact-resonance atomic force microscopy
    Ma, C.
    Pfahl, V.
    Wang, Z.
    Chen, Y.
    Chu, J.
    Phani, M. K.
    Kumar, A.
    Arnold, W.
    Samwer, K.
    APPLIED PHYSICS LETTERS, 2018, 113 (08)