Error analysis of proper orthogonal decomposition data assimilation schemes with grad-div stabilization for the Navier-Stokes equations

被引:8
|
作者
Garcia-Archilla, Bosco [1 ]
Novo, Julia [2 ]
Rubino, Samuele [3 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[2] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[3] Univ Seville, Dept EDAN &IMUS, Seville, Spain
关键词
Data assimilation; Navie-Stokes equations; Uniform-in-time error estimates; Proper orthogonal decomposition; Fully discrete schemes; Mixed finite elements methods; FINITE-ELEMENT-METHOD; SIMULATION; POD; APPROXIMATION; STABILITY; UNIFORM; FLOW;
D O I
10.1016/j.cam.2022.114246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The error analysis of a proper orthogonal decomposition (POD) data assimilation (DA) scheme for the Navier-Stokes equations is carried out. A grad-div stabilization term is added to the formulation of the POD method. Error bounds with constants independent on inverse powers of the viscosity parameter are derived for the POD algorithm. No upper bounds in the nudging parameter of the data assimilation method are required. Numerical experiments show that, for large values of the nudging parameter, the proposed method rapidly converges to the real solution, and greatly improves the overall accuracy of standard POD schemes up to low viscosities over predictive time intervals. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Proper Generalized Decomposition method for incompressible Navier-Stokes equations with a spectral discretization
    Dumon, A.
    Allery, C.
    Ammar, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8145 - 8162
  • [22] A HIGHER-ORDER ENSEMBLE/PROPER ORTHOGONAL DECOMPOSITION METHOD FOR THE NONSTATIONARY NAVIER-STOKES EQUATIONS
    Gunzburger, Max
    Jiang, Nan
    Schneier, Michael
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2018, 15 (4-5) : 608 - 627
  • [23] Proper general decomposition (PGD) for the resolution of Navier-Stokes equations
    Dumon, A.
    Allery, C.
    Ammar, A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 1387 - 1407
  • [24] AN ENSEMBLE-PROPER ORTHOGONAL DECOMPOSITION METHOD FOR THE NONSTATIONARY NAVIER STOKES EQUATIONS
    Gunzburger, Max
    Jiang, Nan
    Schneier, Michael
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 286 - 304
  • [25] Numerical analysis of two grad-div stabilization methods for the time-dependent Stokes/Darcy model
    Qin, Yi
    Hou, Yanren
    Huang, Pengzhan
    Wang, Yongshuai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (03) : 817 - 832
  • [26] A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics
    D'Elia, Marta
    Perego, Mauro
    Veneziani, Alessandro
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (02) : 340 - 359
  • [27] UNIFORM IN TIME ERROR ESTIMATES FOR A FINITE ELEMENT METHOD APPLIED TO A DOWNSCALING DATA ASSIMILATION ALGORITHM FOR THE NAVIER-STOKES EQUATIONS
    Garcia-Archilla, Bosco
    Novo, Julia
    Titi, Edriss S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 410 - 429
  • [28] Numerical Analysis of a BDF2 Modular Grad-Div Stability Method for the Stokes/Darcy Equations
    Wang, Jiangshan
    Meng, Lingxiong
    Jia, Xiaofeng
    Jia, Hongen
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 1981 - 2000
  • [29] Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations
    Biswas, Animikh
    Foias, Ciprian
    Mondaini, Cecilia F.
    Titi, Edriss S.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02): : 295 - 326
  • [30] A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations
    Luo, Zhendong
    Du, Juan
    Xie, Zhenghui
    Guo, Yan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (01) : 31 - 46