Cycle lengths and chromatic number of graphs

被引:17
|
作者
Mihók, P
Schiermeyer, I
机构
[1] Tech Univ, Fac Econ, Kosice 04001, Slovakia
[2] Slovak Acad Sci, Math Inst, Kosice 04001, Slovakia
[3] Tech Univ Bergakad Freiberg, Inst Diskrete Math & Algebra, D-09596 Freiberg, Germany
关键词
chromatic number; cycle length; k-degenerate graph;
D O I
10.1016/j.disc.2003.11.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple finite graph G let C-o(G) and C-e(G) denote the set of odd cycle lengths and even cycle lengths in a graph G, respectively. We will show that the chromatic number chi(G) of G satisfies: chi(G) less than or equal to min {2r + 2,2s + 3} less than or equal to r + s + 2, if \Co(G)\ = r and \Ce(G)\ = s. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 149
页数:3
相关论文
共 50 条
  • [31] On the injective chromatic number of graphs
    Hahn, G
    Kratochvíl, J
    Sirán, J
    Sotteau, D
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 179 - 192
  • [32] ON THE DYNAMIC CHROMATIC NUMBER OF GRAPHS
    Akbari, S.
    Ghanbari, M.
    Jahanbekam, S.
    COMBINATORICS AND GRAPHS, 2010, 531 : 11 - +
  • [33] ON THE CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS
    DUFFUS, D
    SANDS, B
    WOODROW, RE
    JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 487 - 495
  • [34] On incompactness for chromatic number of graphs
    Saharon Shelah
    Acta Mathematica Hungarica, 2013, 139 : 363 - 371
  • [35] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [36] On the chromatic number of circulant graphs
    Barajas, Javier
    Serra, Oriol
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5687 - 5696
  • [37] On Group Chromatic Number of Graphs
    Hong-Jian Lai
    Xiangwen Li
    Graphs and Combinatorics, 2005, 21 : 469 - 474
  • [38] On the adaptable chromatic number of graphs
    Hell, Pavol
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 912 - 921
  • [39] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 777 - +
  • [40] The edge-distinguishing chromatic number of spider graphs with three legs or bounded leg lengths
    Fickes, Grant
    Wong, Tony W. H.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 113 : 165 - 181