microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis

被引:177
作者
Ouimet, Mireille [1 ]
Ediriweera, Hasini [1 ]
Afonso, Milessa Silva [1 ]
Ramkhelawon, Bhama [2 ]
Singaravelu, Ragunath [3 ,4 ]
Liao, Xianghai [5 ,6 ,7 ]
Bandler, Rachel C. [1 ]
Rahman, Karishma [1 ]
Fisher, Edward A. [1 ]
Rayner, Katey J. [1 ,3 ]
Pezacki, John P. [3 ,4 ]
Tabas, Ira [5 ,6 ,7 ]
Moore, Kathryn J. [8 ]
机构
[1] NYU, Med Ctr, Marc & Ruti Bell Vasc Biol & Dis Program, Leon H Charney Div Cardiol,Dept Med, New York, NY 10003 USA
[2] NYU, Med Ctr, Div Vasc Surg, Dept Surg, New York, NY 10003 USA
[3] Univ Ottawa, Dept Biochem Microbiol & Immunol, Ottawa, ON, Canada
[4] Natl Res Council Canada, Ottawa, ON, Canada
[5] Columbia Univ, Dept Med, New York, NY USA
[6] Columbia Univ, Dept Pathol, New York, NY USA
[7] Columbia Univ, Dept Cell Biol, New York, NY USA
[8] Univ Ottawa, Heart Inst, Ottawa, ON, Canada
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
atherosclerosis; autophagy; hydrolysis; lipid droplets; macrophages; CHOLESTEROL EFFLUX; LIPOPROTEIN METABOLISM; FOAM CELLS; MIR-33; PHAGOCYTOSIS; INHIBITION; EXPRESSION; REPRESSION; REGRESSION; CLEARANCE;
D O I
10.1161/ATVBAHA.116.308916
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective-Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lipids to maintain cellular homeostasis. microRNA-33 (miR-33) is a post-transcriptional regulator of genes involved in cholesterol homeostasis, yet the complete mechanisms by which miR-33 controls lipid metabolism are unknown. We investigated whether miR-33 targeting of autophagy contributes to its regulation of cholesterol homeostasis and atherogenesis. Approach and Results-Using coherent anti-Stokes Raman scattering microscopy, we show that miR-33 drives lipid droplet accumulation in macrophages, suggesting decreased lipolysis. Inhibition of neutral and lysosomal hydrolysis pathways revealed that miR-33 reduced cholesterol mobilization by a lysosomal-dependent mechanism, implicating repression of autophagy. Indeed, we show that miR-33 targets key autophagy regulators and effectors in macrophages to reduce lipid droplet catabolism, an essential process to generate free cholesterol for efflux. Notably, miR-33 regulation of autophagy lies upstream of its known effects on ABCA1 (ATP-binding cassette transporter A1)-dependent cholesterol efflux, as miR-33 inhibitors fail to increase efflux upon genetic or chemical inhibition of autophagy. Furthermore, we find that miR-33 inhibits apoptotic cell clearance via an autophagy-dependent mechanism. Macrophages treated with anti-miR-33 show increased efferocytosis, lysosomal biogenesis, and degradation of apoptotic material. Finally, we show that treating atherosclerotic Ldlr(-/-) mice with anti-miR-33 restores defective autophagy in macrophage foam cells and plaques and promotes apoptotic cell clearance to reduce plaque necrosis. Conclusions-Collectively, these data provide insight into the mechanisms by which miR-33 regulates cellular cholesterol homeostasis and atherosclerosis.
引用
收藏
页码:1058 / +
页数:14
相关论文
共 50 条
  • [1] miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity
    Allen, Ryan M.
    Marquart, Tyler J.
    Albert, Carolyn J.
    Suchy, Frederick J.
    Wang, David Q. -H.
    Ananthanarayanan, Meenakshisundaram
    Ford, David A.
    Baldan, Angel
    [J]. EMBO MOLECULAR MEDICINE, 2012, 4 (09) : 882 - 895
  • [2] MicroRNAs: Target Recognition and Regulatory Functions
    Bartel, David P.
    [J]. CELL, 2009, 136 (02) : 215 - 233
  • [3] BROWN MS, 1980, J BIOL CHEM, V255, P9344
  • [4] miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
    Davalos, Alberto
    Goedeke, Leigh
    Smibert, Peter
    Ramirez, Cristina M.
    Warrier, Nikhil P.
    Andreo, Ursula
    Cirera-Salinas, Daniel
    Rayner, Katey
    Suresh, Uthra
    Pastor-Pareja, Jose Carlos
    Esplugues, Enric
    Fisher, Edward A.
    Penalva, Luiz O. F.
    Moore, Kathryn J.
    Suarez, Yajaira
    Lai, Eric C.
    Fernandez-Hernando, Carlos
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (22) : 9232 - 9237
  • [5] Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor
    DeVries-Seimon, T
    Li, YK
    Yao, PM
    Stone, E
    Wang, YB
    Davis, RJ
    Flavell, R
    Tabas, I
    [J]. JOURNAL OF CELL BIOLOGY, 2005, 171 (01) : 61 - 73
  • [6] miR33 Inhibition Overcomes Deleterious Effects of Diabetes Mellitus on Atherosclerosis Plaque Regression in Mice
    Distel, Emilie
    Barrett, Tessa J.
    Chung, Kellie
    Girgis, Natasha M.
    Parathath, Saj
    Essau, Christine C.
    Murphy, Andrew J.
    Moore, Kathryn J.
    Fisher, Edward A.
    [J]. CIRCULATION RESEARCH, 2014, 115 (09) : 759 - U165
  • [7] Induction of Lysosomal Biogenesis in Atherosclerotic Macrophages Can Rescue Lipid-Induced Lysosomal Dysfunction and Downstream Sequelae
    Emanuel, Roy
    Sergin, Ismail
    Bhattacharya, Somashubhra
    Turner, Jaleisa N.
    Epelman, Slava
    Settembre, Carmine
    Diwan, Abhinav
    Ballabio, Andrea
    Razani, Babak
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2014, 34 (09) : 1942 - 1952
  • [8] MicroRNA Regulation of Atherosclerosis
    Feinberg, Mark W.
    Moore, Kathryn J.
    [J]. CIRCULATION RESEARCH, 2016, 118 (04) : 703 - 720
  • [9] Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation
    Gerin, Isabelle
    Clerbaux, Laure-Alix
    Haumont, Olivier
    Lanthier, Nicolas
    Das, Arun K.
    Burant, Charles F.
    Leclercq, Isabelle A.
    MacDougald, Ormond A.
    Bommer, Guido T.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (44) : 33652 - 33661
  • [10] Non-coding RNAs as orchestrators of autophagic processes
    Gupta, Shashi Kumar
    Thum, Thomas
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2016, 95 : 26 - 30