Investigation of the potential mechanism of the Shugan Xiaozhi decoction for the treatment of nonalcoholic fatty liver disease based on network pharmacology, molecular docking and molecular dynamics simulation

被引:2
|
作者
Yang, Rong [1 ]
Yang, Huili [2 ]
Jiang, Dansheng [2 ]
Xu, Linyi [2 ]
Feng, Lian [2 ]
Xing, Yufeng [2 ]
机构
[1] Macau Univ Sci & Technol, Fac Chinese Med, Macau, Peoples R China
[2] Guangzhou Univ Chinese Med, Shenzhen Tradit Chinese Med Hosp, Dept Hepatol, Shenzhen, Peoples R China
来源
PEERJ | 2022年 / 10卷
关键词
Shugan Xiaozhi decoction; Nonalcoholic fatty liver disease (NAFLD); Network pharmacology; Molecular docking; Molecular dynamics simulation; Signaling pathway; LIFE-STYLE INTERVENTION; OXIDATIVE STRESS; VITAMIN-E; ACID; NAFLD; RISK; STEATOHEPATITIS; PIOGLITAZONE; PATHOGENESIS; METAANALYSIS;
D O I
10.7717/peerj.14171
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background. Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease, the incidence of which increases annually. Shugan Xiaozhi (SGXZ) decoction, a composite traditional Chinese medicinal prescription, has been demonstrated to exert a therapeutic effect on NAFLD. In this study, the potential bioactive ingredients and mechanism of SGXZ decoction against NAFLD were explored via network pharmacology, molecular docking, and molecular dynamics simulation. Methods. Compounds in SGXZ decoction were identified and collected from the literature, and the corresponding targets were predicted through the Similarity Ensemble Approach database. Potential targets related to NAFLD were searched on DisGeNET and GeneCards databases. The compound-target-disease and proteinprotein interaction (PPI) networks were constructed to recognize key compounds and targets. Functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on the targets. Molecular docking was used to further screen the potent active compounds in SGXZ. Finally, molecular dynamics (MD) simulation was applied to verify and validate the binding between the most potent compound and targets. Results. A total of 31 active compounds and 220 corresponding targets in SGXZ decoction were collected. Moreover, 1,544 targets of NAFLD were obtained, of which 78 targets intersected with the targets of SGXZ decoction. Key compounds and targets were recognized through the compound-target-disease and PPI network. Multiple biological pathways were annotated, including PI3K-Akt, MAPK, insulin resistance, HIF-1, and tryptophan metabolism. Molecular docking showed that gallic acid, chlorogenic acid and isochlorogenic acid A could combine with the key targets. Molecular dynamics simulations suggested that isochlorogenic acid A might potentially bind directly with RELA, IL-6, VEGFA, and MMP9 in the regulation of PI3K-Akt signaling pathway. Conclusion. This study investigated the active substances and key targets of SGXZ decoction in the regulation of multiple-pathways based on network pharmacology and computational approaches, providing a theoretical basis for further pharmacological research into the potential mechanism of SGXZ in NAFLD.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Exploring the potential mechanism of Simiao Yongan decoction in the treatment of diabetic peripheral vascular disease based on network pharmacology and molecular docking technology
    Cao, Fang
    Zhang, Yongkang
    Zong, Yuan
    Feng, Xia
    Deng, Junlin
    Wang, Yuzhen
    Cao, Yemin
    MEDICINE, 2023, 102 (52) : E36762
  • [42] Study on the Antianxiety Mechanism of Suanzaoren Decoction Based on Network Pharmacology and Molecular Docking
    Xu, Xiaocong
    Gao, Bingbing
    Li, Xiongying
    Lei, Shanshan
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2021, 2021
  • [43] Potential Mechanisms of Biejiajian Pill in the Treatment of Diabetic Atherosclerosis Based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Zhu, Rong
    Du, Bingzhao
    Yuan, Jiayao
    Yan, Shuxun
    Shao, Mingyi
    Sang, Feng
    Bi, Qian
    Wang, Zhongrui
    Zhen, Qian
    Fu, Yu
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [44] Network Pharmacology and Molecular Docking Integrated with Molecular Dynamics Simulations Investigate the Pharmacological Mechanism ofYinchenhao Decoction in the Treatment of Non-alcoholic Fatty LiverDisease
    Yang, Rong
    Jiang, Dansheng
    Xu, Hongling
    Yang, Huili
    Feng, Lian
    Wu, Qibiao
    Xing, Yufeng
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024,
  • [45] The molecular mechanism of "Dahuang-Shengjiang-Banxia decoction" in the treatment of diabetic kidney disease was verified based on network pharmacology and molecular docking
    Xu, Duojie
    Yuan, Ling
    Che, Mengying
    Liu, Wenjing
    Li, Xiangyang
    Yang, Yifan
    Wang, Kaili
    Nan, Yi
    HELIYON, 2024, 10 (02)
  • [46] Exploration of Gancao Xiexin decoction for treatment of Behcet disease based on network pharmacology and molecular docking
    Zhang, Xin
    MEDICINE, 2022, 101 (42) : E31277
  • [47] Molecular targets and mechanisms of Sijunzi decoction in the treatment of Parkinson's disease: evidence from network pharmacology, molecular docking, molecular dynamics simulation, and experimental validation
    Jiang, Yang
    Wu, Wanfeng
    Xie, Le
    Zhou, Yue
    Yang, Kailin
    Wu, Dahua
    Xu, Wenfeng
    Fang, Rui
    Ge, Jinwen
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [48] Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis
    Shou, Xintian
    Wang, Yumeng
    Zhang, Xuesong
    Zhang, Yanju
    Yang, Yan
    Duan, Chenglin
    Yang, Yihan
    Jia, Qiulei
    Yuan, Guozhen
    Shi, Jingjing
    Shi, Shuqing
    Cui, Hanming
    Hu, Yuanhui
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [49] Potential Molecular Mechanism of Guishao Pingchan Recipe in the Treatment of Parkinson's Disease Based on Network Pharmacology and Molecular Docking
    Tan, Li-Juan
    Yu, Ying
    Fang, Ze-Hai
    Zhang, Jiong-Lu
    Huang, Hai-Liang
    Liu, Hong-Jie
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (08)
  • [50] Investigating the Molecular Mechanism of Qianghuo Shengshi Decoction in the Treatment of Ankylosing Spondylitis Based on Network Pharmacology and Molecular Docking Analysis
    Luo, Simin
    Xiao, Xiang
    Luo, Wenting
    Zhang, Xuan
    Zhang, Jian
    Tang, Songqi
    PROCESSES, 2022, 10 (08)