Evaluating nonlinear Kalman filters for parameter estimation in reservoirs during petroleum well drilling

被引:0
|
作者
Nygaard, Gerhard [1 ]
Naevdal, Geir
Mylvaganam, Saba
机构
[1] Int Res Inst Stavanger, IRIS Petroleum, Bergen, Norway
[2] Telemark Univ Coll, Dept Elect Engn Informat Technol & Cybernet, Porsgrunn, Norway
来源
PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-4 | 2006年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When drilling into a petroleum reservoir, the geological properties of the reservoir might require that the well pressure is kept slightly below the reservoir pore pressure. This leads to a migration of reservoir fluids from the reservoir into the oil well. The amount of reservoir fluids flowing into the well is dependent of the reservoir parameter named production. paper evaluates the performance of the extended index. This Kalman filter, the ensemble Kalman filter and the unscented Kalman filter to estimate the production index. The comparison is based on a nonlinear two-phase fluid flow model. The results show that all three filters are capable of identifying the reservoir production index parameter, but that the unscented Kalman filter gives the best performance both when evaluating the least squares deviation from the true value and calculation resource requirements.
引用
收藏
页码:1101 / 1106
页数:6
相关论文
共 50 条
  • [1] Distributed parameter and state estimation in petroleum reservoirs
    Oliver, Dean S.
    Zhang, Yanfen
    Phale, Hemant A.
    Chen, Yan
    COMPUTERS & FLUIDS, 2011, 46 (01) : 70 - 77
  • [2] Parameter estimation using Kalman filters with constraints
    Walker, David M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (04): : 1067 - 1078
  • [3] AQUIFER PARAMETER-ESTIMATION USING KALMAN FILTERS
    CHANDER, S
    KAPOOR, PN
    GOYAL, SK
    JOURNAL OF THE IRRIGATION AND DRAINAGE DIVISION-ASCE, 1981, 107 (01): : 25 - 33
  • [4] Parameter Estimation Using Nonlinear Kalman Filters for Motion Compensation of Airborne Synthetic Aperture Radars
    Chen, Tao
    Ding, Yongfei
    Pang, Ruifan
    Gong, Cheng
    Xu, Dinghai
    Zhang, Hengyang
    9TH INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOL. 1, (ICMMT 2016), 2016, : 524 - 526
  • [5] Systematic Estimation of Noise Statistics for Nonlinear Kalman Filters
    Krog, Halvor Aarnes
    Jaschke, Johannes
    IFAC PAPERSONLINE, 2022, 55 (07): : 19 - 24
  • [6] PARAMETER IDENTIFICATION IN NONLINEAR THERMAL NETWORKS BY MEANS OF KALMAN FILTERS
    KAAZ, MA
    ANGEWANDTE INFORMATIK, 1972, (06): : 269 - &
  • [7] Constrained Nonlinear State Estimation Using Ensemble Kalman Filters
    Prakash, J.
    Patwardhan, Sachin C.
    Shah, Sirish L.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (05) : 2242 - 2253
  • [8] Using sequential Kalman filters for state estimation of nonlinear systems
    Mohammadi, S.
    Mohammadi, A.
    Keivani, H.
    Askari, M. R.
    Kavehnia, F.
    Ghanbarian, M. M.
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 258 - +
  • [9] Reinforced Lattice Kalman Filters: A Robust Nonlinear Estimation Strategy
    Rahimnejad, Abolfazl
    Enayati, Javad
    Vanfretti, Luigi
    Gadsden, Stephen Andrew
    Alshabi, Mohammad
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2023, 4 : 410 - 423
  • [10] Efficient Implementation of Continuous-Discrete Extended Kalman Filters for State and Parameter Estimation of Nonlinear Dynamic Systems
    Guihal, Jean-Marie
    Auger, Francois
    Bernard, Nicolas
    Schaeffer, Emmanuel
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (05) : 3077 - 3085