Performance of small-world feedforward neural networks for the diagnosis of diabetes

被引:83
作者
Erkaymaz, Okan [1 ]
Ozer, Mahmut [2 ]
Perc, Matja [3 ,4 ]
机构
[1] Bulent Ecevit Univ, Dept Comp Engn, Zonguldak, Turkey
[2] Bulent Ecevit Univ, Dept Elect & Elect Engn, Zonguldak, Turkey
[3] Univ Maribor, Fac Nat Sci & Math, Dept Phys, Koroska Testa 160, SI-2000 Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Mladinska 3, Maribor, Slovenia
关键词
Diabetes; Small-world network; Feedforward neural network; Rewiring; Newman-Watts model; Watts-Strogatz model; COMPONENT ANALYSIS; CLASSIFICATION; REGRESSION; TOPOLOGY; SYSTEM; IMPACT;
D O I
10.1016/j.amc.2017.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the performance of two different small-world feedforward neural networks for the diagnosis of diabetes. We use the Pima Indians Diabetic Dataset as input. We have previously shown than the Watts-Strogatz small-world feedforward neural network delivers a better classification performance than conventional feedforward neural networks. Here, we compare this performance further with the one delivered by the Newman-Watts small-world feedforward neural network, and we show that the latter is better still. Moreover, we show that Newman-Watts small-world feedforward neural networks yield the highest output correlation as well as the best output error parameters. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 40 条
[1]  
Anand R., 2012, INT J ENG ADV TECHNO, V2
[2]   Using chaotic artificial neural networks to model memory in the brain [J].
Aram, Zainab ;
Jafari, Sajad ;
Ma, Jun ;
Sprott, Julien C. ;
Zendehrouh, Sareh ;
Pham, Viet-Thanh .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :449-459
[3]   Small-world brain networks [J].
Bassett, Danielle Smith ;
Bullmore, Edward T. .
NEUROSCIENTIST, 2006, 12 (06) :512-523
[4]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[5]   ARTMAP-IC and medical diagnosis: Instance counting and inconsistent cases [J].
Carpenter, GA ;
Markuzon, N .
NEURAL NETWORKS, 1998, 11 (02) :323-336
[6]  
Deng D, 2001, P 5 BIANN C ART NEUR, P46
[7]   Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes [J].
Erkaymaz, Okan ;
Ozer, Mahmut .
CHAOS SOLITONS & FRACTALS, 2016, 83 :178-185
[8]   Impact of small-world topology on the performance of a feed-forward artificial neural network based on 2 different real-life problems [J].
Erkaymaz, Okan ;
Ozer, Mahmut ;
Yumusak, Nejat .
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2014, 22 (03) :708-718
[9]   Artificial neural network regression as a local search heuristic for ensemble strategies in differential evolution [J].
Fister, Iztok ;
Suganthan, Ponnuthurai Nagaratnam ;
Fister, Iztok, Jr. ;
Kamal, Salahuddin M. ;
Al-Marzouki, Fahad M. ;
Perc, Matjaz ;
Strnad, Damjan .
NONLINEAR DYNAMICS, 2016, 84 (02) :895-914
[10]   Computational intelligence in sports: Challenges and opportunities within a new research domain [J].
Fister, Iztok, Jr. ;
Ljubic, Karin ;
Suganthan, Ponnuthurai Nagaratnam ;
Perc, Matjaz ;
Fister, Iztok .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 :178-186