Existence of an isolated band in a system of three particles in an optical lattice

被引:11
作者
Lakaev, Saidakhmat N.
Dell'Antonio, Gianfausto
Khalkhuzhaev, Ahmad M.
机构
关键词
Schrodinger; system; Hamiltonian; zero-range; bound states; eigenvalue; lattice; SCHRODINGER-OPERATORS;
D O I
10.1088/1751-8113/49/14/145204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of two- and three-particle bound states of the Schrodinger operators h(mu)(k), k is an element of T-d and H-mu(K), K is an element of T-d associated to Hamiltonians h(mu) and H-mu of a system of two and three identical bosons on the lattice Z(d), d = 1, 2 interacting via pairwise zero-range attractive mu < 0 or repulsive mu > 0 potentials. As a consequence, we show the existence of an isolated band in the two- and three-bosonic systems in an optical lattice.
引用
收藏
页数:15
相关论文
共 9 条
  • [1] Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/s00023-004-0181-9, 10.1007/S00023-004-0181-9]
  • [2] Albeverio S, 2012, MARKOV PROCESS RELAT, V18, P387
  • [3] Ultracold quantum gases in optical lattices
    Bloch, I
    [J]. NATURE PHYSICS, 2005, 1 (01) : 23 - 30
  • [4] The cold atom Hubbard toolbox
    Jaksch, D
    Zoller, P
    [J]. ANNALS OF PHYSICS, 2005, 315 (01) : 52 - 79
  • [5] Asymptotic behavior of an eigenvalue of the two-particle discrete Schrodinger operator
    Lakaev, S. N.
    Khalkhuzhaev, A. M.
    Lakaev, Sh S.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (03) : 800 - 811
  • [6] Existence and analyticity of bound states of a two-particle Schrodinger operator on a lattice
    Lakaev, S. N.
    Ulashov, S. S.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 170 (03) : 326 - 340
  • [7] ON EFIMOV EFFECT IN A SYSTEM OF 3 IDENTICAL QUANTUM PARTICLES
    LAKAEV, SN
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (03) : 166 - 175
  • [8] Reed M, 1979, 4 ANAL OPERATORS
  • [9] Repulsively bound atom pairs in an optical lattice
    Winkler, K.
    Thalhammer, G.
    Lang, F.
    Grimm, R.
    Denschlag, J. Hecker
    Daley, A. J.
    Kantian, A.
    Buechler, H. P.
    Zoller, P.
    [J]. NATURE, 2006, 441 (7095) : 853 - 856