Si'lnikov chaos in the generalized Lorenz canonical form of dynamical systems

被引:71
作者
Zhou, TS [1 ]
Chen, GR
Celikovsky, S
机构
[1] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[3] Czech Tech Univ, Fac Elect Engn, Dept Control Engn, CR-16635 Prague, Czech Republic
关键词
heteroclinic orbit; generalized Lorenz canonical form; Si'lnikov criterion;
D O I
10.1007/s11071-005-4195-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper studies the generalized Lorenz canonical form of dynamical systems introduced by. Celikovsky and Chen [ International Journal of Bifurcation and Chaos 12( 8), 2002, 1789]. It proves the existence of a heteroclinic orbit of the canonical form and the convergence of the corresponding series expansion. The. Si'lnikov criterion along with some technical conditions guarantee that the canonical form has Smale horseshoes and horseshoe chaos. As a consequence, it also proves that both the classical Lorenz system and the Chen system have. Si'lnikov chaos. When the system is changed into another ordinary differential equation through a nonsingular one-parameter linear transformation, the exact range of existence of. Si'lnikov chaos with respect to the parameter can be specified. Numerical simulation verifies the theoretical results and analysis.
引用
收藏
页码:319 / 334
页数:16
相关论文
共 20 条
[1]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[2]  
CELIKOVSKY S, 1994, KYBERNETIKA, V30, P403
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]   A new chaotic system and its generation [J].
Liu, WB ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :261-267
[5]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[6]  
2
[7]   A new chaotic attractor coined [J].
Lü, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :659-661
[8]   EQUATION FOR CONTINUOUS CHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1976, 57 (05) :397-398
[9]  
Shilnikov L. P., 1965, Soviet Math. Doklady, V6, P163
[10]  
SHILNIKOV LP, 1970, MAT SBORNIK, V10, P91