Phase Formation and Transformation in Alumina/YSZ Nanocomposite Coating Deposited by Suspension Plasma Spray Process

被引:36
作者
Tarasi, F. [1 ]
Medraj, M. [1 ]
Dolatabadi, A. [1 ]
Oberste-Berghaus, J. [2 ]
Moreau, C. [2 ]
机构
[1] Concordia Univ, Dept Mech & Ind Engn, Montreal, PQ H3G 2W1, Canada
[2] Natl Res Council Canada, IMI, Boucherville, PQ J4B 6Y4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
alumina/yttria-stabilized zirconia; amorphous phase; ceramic composite coating; crystalline structure; suspension plasma spray; thermal changes; YTTRIA-STABILIZED ZIRCONIA; COMPOSITE COATINGS; PARAMETERS; CERAMICS; SOLIDIFICATION; SYSTEMS; POWDERS;
D O I
10.1007/s11666-009-9461-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Suspension Plasma Spray process was used for deposition of pseudo-eutectic composition of alumina-yttria-stabilized zirconia as a potential thermal barrier coating using Mettech axial III torch. Process variables including feed and plasma parameters were altered to find their effects on the formation of phases in the composite coating. The in-flight particle velocity was found to be the crucial parameter on phase formation in the resulting coatings. Low particle velocities below 650 m/s result in the formation of stable phases i.e., alpha-alumina and tetragonal zirconia. In contrast, high particle velocities more than 750 m/s favor the metastable gamma-alumina and cubic zirconia phases as dominant structures in as-deposited coatings. Accordingly, the plasma auxiliary gas and plasma power as influential parameters on the particle velocity were found to be reliable tools in controlling the resulting coating structure thus, the consequent properties. The noncrystalline portion of the coatings was also studied. It was revealed that upon heating, the amorphous phase prefers to crystallize into pre-existing crystalline phases in the as-deposited coating. Thus, the ultimate crystalline structure can be designed using the parameters that control the particle velocity during plasma spray coating.
引用
收藏
页码:787 / 795
页数:9
相关论文
共 32 条
[1]   Thermal stability of zirconia/alumina thin coatings produced by magnetron sputtering [J].
Andritschky, M ;
Cunha, I ;
Alpuim, P .
SURFACE & COATINGS TECHNOLOGY, 1997, 94-5 (1-3) :144-148
[2]   Mechanical and thermal transport properties of suspension thermal-sprayed alumina-zirconia composite coatings [J].
Berghaus, Joerg Oberste ;
Legoux, Jean-Gabriel ;
Moreau, Christian ;
Tarasi, Fariba ;
Chraska, Tomas .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2008, 17 (01) :91-104
[3]   Air-plasma spraying colloidal solutions of nanosized ceramic powders [J].
Chen, Z ;
Trice, RW ;
Besser, M ;
Yang, XY ;
Sordelet, D .
JOURNAL OF MATERIALS SCIENCE, 2004, 39 (13) :4171-4178
[4]   Transmission electron microscopy study of rapid solidification of plasma sprayed zirconia - part II. Interfaces and subsequent splat solidification [J].
Chraska, T ;
King, AH .
THIN SOLID FILMS, 2001, 397 (1-2) :40-48
[5]   Fabrication of bulk nanocrystalline alumina-zirconia materials [J].
Chraska, Tomas ;
Neufuss, Karel ;
Dubsky, Jiri ;
Ctibor, Pavel ;
Rohan, Pavel .
CERAMICS INTERNATIONAL, 2008, 34 (05) :1229-1236
[6]  
Christian J.W., 2002, THEORY TRANSFORMATIO
[7]   Heat treatment induced phase and microstructural development in bulk plasma sprayed alumina [J].
Damani, RJ ;
Makroczy, P .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2000, 20 (07) :867-888
[8]   Phenomena involved in suspension plasma spraying part 2: Zirconia particle treatment and coating formation [J].
Delbos, C. ;
Fazilleau, J. ;
Rat, V. ;
Coudert, J. F. ;
Fauchais, P. ;
Pateyron, B. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2006, 26 (04) :393-414
[9]   Production and characterization of metastable ZrO2-Al2O3Coatings obtained by APS plus quench [J].
Dosta, S. ;
Cano, I. G. ;
Miguel, J. R. ;
Gullemany, J. M. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2008, 17 (03) :360-364
[10]   Parameters controlling liquid plasma spraying:: Solutions, sols, or suspensions [J].
Fauchais, P. ;
Etchart-Salas, R. ;
Rat, V. ;
Coudert, J. F. ;
Caron, N. ;
Wittmann-Teneze, K. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2008, 17 (01) :31-59