PRINCIPAL CURVATURE ESTIMATES FOR THE CONVEX LEVEL SETS OF SEMILINEAR ELLIPTIC EQUATIONS

被引:23
作者
Chang, Sun-Yung Alice [1 ]
Ma, Xi-Nan [2 ]
Yang, Paul [3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Curvature estimate; level sets; semilinear elliptic equation; PARALLEL PLANES; CURVES; SURFACES; RINGS;
D O I
10.3934/dcds.2010.28.1151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a positive lower bound for the principal curvature of the strict convex level sets of harmonic functions in terms of the principal curvature of the domain boundary and the norm of the boundary gradient. We also extend this result to a class of semi-linear elliptic partial differential equations under certain structure condition.
引用
收藏
页码:1151 / 1164
页数:14
相关论文
共 20 条
[1]  
Ahlfors Lars V., 1973, Conformal Invariants: Topics in Geometric Function Theory
[2]  
[Anonymous], LECT NOTES MATH
[3]  
BIAN BJ, INDIANA U M IN PRESS
[4]   Quasiconcave Solutions to Elliptic Problems in Convex Rings [J].
Bianchini, Chiara ;
Longinetti, Marco ;
Salani, Paolo .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1565-1589
[5]  
Caffarelli L., 1985, Current Topics in Partial Differential Equations, P1
[6]   CONVEXITY PROPERTIES OF SOLUTIONS TO SOME CLASSICAL VARIATIONAL-PROBLEMS [J].
CAFFARELLI, LA ;
SPRUCK, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (11) :1337-1379
[7]   CONVEXITY OF SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (02) :431-456
[8]  
Gabriel RM., 1957, J. Lond. Math. Soc, V32, P286, DOI DOI 10.1112/JLMS/S1-32.3.286
[9]   Note on the Green function of a star shaped three dimensional region [J].
Gergen, JJ .
AMERICAN JOURNAL OF MATHEMATICS, 1931, 53 :746-752
[10]  
Hormander L., 2007, NOTIONS CONVEXITY