A Criterion for the Onset of Chaos in Systems of Two Eccentric Planets

被引:65
作者
Hadden, Sam [1 ]
Lithwick, Yoram [2 ,3 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS 51, Cambridge, MA 02138 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[3] CIERA, Evanston, IL USA
关键词
celestial mechanics; chaos; planets and satellites: dynamical evolution and stability; WISDOM-HOLMAN INTEGRATOR; OUTER ASTEROID BELT; N-BODY PROBLEM; SOLAR-SYSTEM; RESONANCE OVERLAP; 3-BODY PROBLEM; OSCILLATOR-SYSTEMS; SYMPLECTIC MAPS; STABILITY; DYNAMICS;
D O I
10.3847/1538-3881/aad32c
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive a criterion for the onset of chaos in systems consisting of two massive, eccentric, coplanar planets. Given the planets' masses and separation, the criterion predicts the critical eccentricity above which chaos is triggered. Chaos occurs where mean motion resonances overlap, as in Wisdom's pioneering work. But whereas Wisdom considered the overlap of first-order resonances only, limiting the applicability of his criterion to nearly circular planets, we extend his results to arbitrarily eccentric planets (up to crossing orbits) by examining resonances of all orders. We thereby arrive at a simple expression for the critical eccentricity. We do this first for a test particle in the presence of a planet and then generalize to the case of two massive planets, based on a new approximation to the Hamiltonian. We then confirm our results with detailed numerical simulations. Finally, we explore the extent to which chaotic two-planet systems eventually result in planetary collisions.
引用
收藏
页数:14
相关论文
共 60 条
[1]  
[Anonymous], 1983, Regular and Stochastic Motion
[2]  
[Anonymous], 1899, Les Methods Nouvells de la Mecanique Leleste
[3]  
ARNOLD V., 1963, Uspekhi Mat. Nauk, V18, P13, DOI [DOI 10.1070/RM1963V018N05ABEH004130, 10.1070/RM1963v018n05ABEH004130]
[4]  
Arnold V. I., 1963, Russian Mathematical Surveys, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[5]   Analytical treatment of planetary resonances [J].
Batygin, K. ;
Morbidelli, A. .
ASTRONOMY & ASTROPHYSICS, 2013, 556
[6]   On the dynamical stability of the solar system [J].
Batygin, Konstantin ;
Laughlin, Gregory .
ASTROPHYSICAL JOURNAL, 2008, 683 (02) :1207-1216
[7]   CHAOTIC DISINTEGRATION OF THE INNER SOLAR SYSTEM [J].
Batygin, Konstantin ;
Morbidelli, Alessandro ;
Holman, Mathew J. .
ASTROPHYSICAL JOURNAL, 2015, 799 (02)
[8]   Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities [J].
Carter, Joshua A. ;
Agol, Eric ;
Chaplin, William J. ;
Basu, Sarbani ;
Bedding, Timothy R. ;
Buchhave, Lars A. ;
Christensen-Dalsgaard, Jorgen ;
Deck, Katherine M. ;
Elsworth, Yvonne ;
Fabrycky, Daniel C. ;
Ford, Eric B. ;
Fortney, Jonathan J. ;
Hale, Steven J. ;
Handberg, Rasmus ;
Hekker, Saskia ;
Holman, Matthew J. ;
Huber, Daniel ;
Karoff, Christopher ;
Kawaler, Steven D. ;
Kjeldsen, Hans ;
Lissauer, Jack J. ;
Lopez, Eric D. ;
Lund, Mikkel N. ;
Lundkvist, Mia ;
Metcalfe, Travis S. ;
Miglio, Andrea ;
Rogers, Leslie A. ;
Stello, Dennis ;
Borucki, William J. ;
Bryson, Steve ;
Christiansen, Jessie L. ;
Cochran, William D. ;
Geary, John C. ;
Gilliland, Ronald L. ;
Haas, Michael R. ;
Hall, Jennifer ;
Howard, Andrew W. ;
Jenkins, Jon M. ;
Klaus, Todd ;
Koch, David G. ;
Latham, David W. ;
MacQueen, Phillip J. ;
Sasselov, Dimitar ;
Steffen, Jason H. ;
Twicken, Joseph D. ;
Winn, Joshua N. .
SCIENCE, 2012, 337 (6094) :556-559
[9]   The stability of multi-planet systems [J].
Chambers, JE ;
Wetherill, GW ;
Boss, AP .
ICARUS, 1996, 119 (02) :261-268
[10]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379