Hydrazine sensors development based on a glassy carbon electrode modified with a nanostructured TiO2 films by electrochemical approach

被引:55
作者
Rahman, Mohammed M. [1 ]
Alfonso, Valero G. [2 ]
Fabregat-Santiago, Francisco [2 ]
Bisquert, Juan [1 ,2 ]
Asiri, Abdullah M. [1 ]
Alshehri, Abdelmohsen A. [1 ]
Albar, Hassan A. [1 ]
机构
[1] King Abdulaziz Univ, Chem Dept, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Jaume 1, Inst Adv Mat, Castellon de La Plana 12006, Spain
关键词
Nanosensors; Titanium dioxide; Hydrazine sensor; Glassy carbon electrode; I-V method; Sensitivity; TEM; AFM; Detection limit; Response time; Water analysis; TITANIUM-DIOXIDE; ELECTROANALYTICAL DETECTION; ELECTROCATALYTIC OXIDATION; HYBRID MATERIAL; NANOTUBES; PALLADIUM; OXIDE; NANOCOMPOSITE; AMMONIA; ANATASE;
D O I
10.1007/s00604-017-2228-x
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The authors describe a selective hydrazine sensor that is based on the use of a film of TiO2 nanoparticles faceted predominantly at the 101 and 001 sides. The hydrazine (Hyd) sensor was fabricated by depositing the nanoparticles in 5% concentration in a nafion matrix on a glassy carbon electrode (GCE). The sensor exhibits a fast response, excellent sensitivity and good selectivity over 1.0 nM to 10.0 mM. The sensor responds linearly to the logarithm of the concentration of dissolved hydrazine in the range from 1.0 nM to 10.0 mM, with a sensitivity of 35.04 mu A.mM(-1).cm(-2). The detection limit is 28.8 +/- 0.2 pM (at an S/N ratio of 3) is extremely low. In our perception, this approach emerges as an effective technique for developing efficient chemical sensors for environmental pollutants.
引用
收藏
页码:2123 / 2129
页数:7
相关论文
共 49 条
[1]   Determination of hydrazine by polyNi(II) complex modified electrodes with a wide linear calibration range [J].
Azad, Uday Pratap ;
Ganesan, Vellaichamy .
ELECTROCHIMICA ACTA, 2011, 56 (16) :5766-5770
[2]   Electrochemical studies of Zn underpotential/overpotential deposition on a nickel electrode from non-cyanide alkaline solution containing glycine [J].
Ballesteros, J. C. ;
Chainet, E. ;
Ozil, P. ;
Trejo, G. ;
Meas, Y. .
ELECTROCHIMICA ACTA, 2011, 56 (16) :5443-5451
[3]   The electroanalytical detection of hydrazine: A comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array [J].
Batchelor-McAuley, C ;
Banks, CE ;
Simm, AO ;
Jones, TGJ ;
Compton, RG .
ANALYST, 2006, 131 (01) :106-110
[4]   Catalytic oxidation and flow detection of hydrazine compounds at a nafion/ruthenium(III) chemically modified electrode [J].
Casella, IG ;
Guascito, MR ;
Salvi, AM ;
Desimoni, E .
ANALYTICA CHIMICA ACTA, 1997, 354 (1-3) :333-341
[5]   Titanium Dioxide Photocatalysis in Atmospheric Chemistry [J].
Chen, Haihan ;
Nanayakkara, Charith E. ;
Grassian, Vicki H. .
CHEMICAL REVIEWS, 2012, 112 (11) :5919-5948
[6]   Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties [J].
Chen, XY ;
Wang, ZH ;
Wang, X ;
Wan, JX ;
Liu, JW ;
Qian, YT .
INORGANIC CHEMISTRY, 2005, 44 (04) :951-954
[7]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[8]   High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation [J].
Dong, Bin ;
He, Ben-Lin ;
Huang, Jier ;
Gao, Guo-Yu ;
Yang, Zhi ;
Li, Hu-Lin .
JOURNAL OF POWER SOURCES, 2008, 175 (01) :266-271
[9]   Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells [J].
Etgar, Lioz ;
Gao, Peng ;
Xue, Zhaosheng ;
Peng, Qin ;
Chandiran, Aravind Kumar ;
Liu, Bin ;
Nazeeruddin, Md. K. ;
Graetzel, Michael .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (42) :17396-17399
[10]   Cyclic voltammetry studies of nanoporous semiconductors.: Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte [J].
Fabregat-Santiago, F ;
Mora-Seró, I ;
Garcia-Belmonte, G ;
Bisquert, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :758-768