Subseasonal Precipitation Prediction for Africa: Forecast Evaluation and Sources of Predictability

被引:48
作者
de Andrade, Felipe M. [1 ]
Young, Matthew P. [1 ]
MacLeod, David [2 ]
Hirons, Linda C. [1 ]
Woolnough, Steven J. [1 ]
Black, Emily [1 ]
机构
[1] Univ Reading, Natl Ctr Atmospher Sci, Reading, Berks, England
[2] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
基金
英国自然环境研究理事会;
关键词
ENSO; Madden-Julian oscillation; Precipitation; Forecast verification/skill; Hindcasts; Probability forecasts/models/distribution; INDIAN-OCEAN DIPOLE; EL-NINO; MADDEN; SKILL; RESOLUTION; FRAMEWORK; IMPACT; SCORE;
D O I
10.1175/WAF-D-20-0054.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper evaluates subseasonal precipitation forecasts for Africa using hindcasts from three models (ECMWF, UKMO, and NCEP) participating in the Subseasonal to Seasonal (S2S) prediction project. A variety of verification metrics are employed to assess weekly precipitation forecast quality at lead times of one to four weeks ahead (weeks 1-4) during different seasons. Overall, forecast evaluation indicates more skillful predictions for ECMWF over other models and for East Africa over other regions. Deterministic forecasts show substantial skill reduction in weeks 3-4 linked to lower association and larger underestimation of predicted variance compared to weeks 1-2. Tercile-based probabilistic forecasts reveal similar characteristics for extreme categories and low quality in the near-normal category. Although discrimination is low in weeks 3-4, probabilistic forecasts still have reasonable skill, especially in wet regions during particular rainy seasons. Forecasts are found to be overconfident for all weeks, indicating the need to apply calibration for more reliable predictions. Forecast quality within the ECMWF model is also linked to the strength of climate drivers' teleconnections, namely, El Nino-Southern Oscillation, Indian Ocean dipole, and the Madden-Julian oscillation. The impact of removing all driver-related precipitation regression patterns from observations and hindcasts shows reduction of forecast quality compared to including all drivers' signals, with more robust effects in regions where the driver strongly relates to precipitation variability. Calibrating forecasts by adding observed regression patterns to hindcasts provides improved forecast associations particularly linked to the Madden-Julian oscillation. Results from this study can be used to guide decision-makers and forecasters in disseminating valuable forecasting information for different societal activities in Africa.
引用
收藏
页码:265 / 284
页数:20
相关论文
共 55 条
[1]  
Allen MP, 1997, Understanding Regression Analysis, P66
[2]  
Barnston AG, 1997, ATMOS OCEAN, V35, P367
[3]   Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study [J].
Behera, SK ;
Luo, JJ ;
Masson, S ;
Delecluse, P ;
Gualdi, S ;
Navarra, A ;
Yamagata, T .
JOURNAL OF CLIMATE, 2005, 18 (21) :4514-4530
[4]   Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5°C warming [J].
Cai, Wenju ;
Wang, Guojian ;
Gan, Bolan ;
Wu, Lixin ;
Santoso, Agus ;
Lin, Xiaopei ;
Chen, Zhaohui ;
Jia, Fan ;
Yamagata, Toshio .
NATURE COMMUNICATIONS, 2018, 9
[5]  
Coelho CAS, 2019, SUB-SEASONAL TO SEASONAL PREDICTION: THE GAP BETWEEN WEATHER AND CLIMATE FORECASTING, P337, DOI 10.1016/B978-0-12-811714-9.00016-4
[6]   A verification framework for South American sub-seasonal precipitation predictions [J].
Coelho, Caio A. S. ;
Firpo, Mari A. F. ;
de Andrade, Felipe M. .
METEOROLOGISCHE ZEITSCHRIFT, 2018, 27 (06) :503-520
[7]   Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) prediction project models [J].
de Andrade, Felipe M. ;
Coelho, Caio A. S. ;
Cavalcanti, Iracema F. A. .
CLIMATE DYNAMICS, 2019, 52 (9-10) :5451-5475
[8]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[9]   The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 2. Predictability Arising From Stratosphere-Troposphere Coupling [J].
Domeisen, Daniela I. V. ;
Butler, Amy H. ;
Charlton-Perez, Andrew J. ;
Ayarzaguena, Blanca ;
Baldwin, Mark P. ;
Dunn-Sigouin, Etienne ;
Furtado, Jason C. ;
Garfinkel, Chaim I. ;
Hitchcock, Peter ;
Karpechko, Alexey Yu. ;
Kim, Hera ;
Knight, Jeff ;
Lang, Andrea L. ;
Lim, Eun-Pa ;
Marshall, Andrew ;
Roff, Greg ;
Schwartz, Chen ;
Simpson, Isla R. ;
Son, Seok-Woo ;
Taguchi, Masakazu .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (02)
[10]   Heavy Rainfall in Paraguay during the 2015/16 Austral Summer: Causes and Subseasonal-to-Seasonal Predictive Skill [J].
Doss-Gollin, James ;
Munoz, Angel G. ;
Mason, Simon J. ;
Pasten, Max .
JOURNAL OF CLIMATE, 2018, 31 (17) :6669-6685