Diagonal shaving of an involute pinion: optimization of the geometric and kinematic parameters for the pinion finishing operation

被引:3
作者
Radzevich, Stephen P. [1 ]
机构
[1] Eaton Corp, Innovat Ctr, Southfield, MI 48037 USA
关键词
involute pinion; diagonal shaving; local topology; machining time; surface deviations; optimization;
D O I
10.1007/s00170-006-0439-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Investigation of diagonal shaving of an involute pinion and optimization of parameters for the pinion finishing operation and of the shaving cutter design are the objectives of the current research. The paper covers the following topics: (1) analysis of the local topology of the pinion tooth surface and shaving cutter; (2) exploration of the parameters of geometry of contact between the involute tooth surfaces of the pinion and the shaving cutter; (3) determination of the optimum parameters of the shaving cutter design and of the kinematics of the diagonal shaving operation. An approach for the computation of the optimum parameters for the diagonal shaving operation of an involute pinion is developed. The approach is based on fundamental results in the theory of gearing obtained by Buckingham (Analytical mechanics of gears, Dover Publications, New York). The developed approach enables the computation of the optimum parameters for the gear finishing operation. Its application can be easily extended to and employed for the optimization of parameters for other methods of rotary shaving operations of involute and non-involute pinions, i.e., axial (transverse or conventional) shaving, tangential (or underpass) shaving, and plunge shaving operations. Computer simulation of the diagonal shaving operation proves that application of the developed approach enables shaving time reduction or reduction of the actual pinion tooth surface deviation from the true involute tooth surface.
引用
收藏
页码:1170 / 1187
页数:18
相关论文
共 17 条
[1]  
Buckingham E., 1988, ANAL MECH GEARS
[2]  
Denavit J., 1955, T ASME J APPL MECH, P215
[3]  
do Carmo P., 1976, Differential Geometry of Curves and Surfaces
[4]  
DUDLEY DW, 1991, GEAR HDB DESIGN MANU
[5]  
DUGAS JP, 1992, GEAR TECHNOLOGY, P14
[6]  
ENDO R, 1990, GEAR HOBBING SHAPING
[7]  
Korn G A, 1968, MATH HDB SCI ENG DEF
[8]  
MORIWAKI I, 1994, T ASME, V116, P701
[9]  
MORIWAKI I, 1992, P 6 INT POW TRANSM G, V1, P407
[10]  
*NAT BROACH MACH D, 1972, MOD METH GEAR MAN