Cognitive Hybrid PSO/SA Combinatorial Optimization

被引:0
作者
Brezinski, Kenneth [1 ]
Ferens, Ken [1 ]
机构
[1] Univ Manitoba, Dept Elect & Comp Engn, Winnipeg, MB, Canada
来源
PROCEEDINGS OF THE 2019 IEEE 18TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2019) | 2019年
关键词
Swarm intelligence; Simulated annealing; Global optimization; Combinatorial particle swarm optimization; PARTICLE SWARM OPTIMIZATION; GLOBAL OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a population based simulated annealing algorithm to improve modelling of cognitive processes. Particle Swarm Optimization (PSO) is embedded within the basic Simulated Annealing (SA) algorithm to allow for multiple concurrent candidate solutions through the use of a population-driven social coefficient updating the other population members. A modified ramping strategy which balances inertial, personal and swarm coefficients is introduced. The hybrid PSO/SA algorithm was tested on the travelling salesperson problem (TSP), and was shown to outperform the individual algorithms by improving their limitations in exploration and exploitation.
引用
收藏
页码:389 / 393
页数:5
相关论文
共 43 条
[11]  
Eberhart R, 1995, A new optimizer using particle swarm theory, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/mhs.1995.494215]
[12]  
Engelbrecht A. P., SER GECCO 01, P892
[13]   Prototype Generation Using Multiobjective Particle Swarm Optimization for Nearest Neighbor Classification [J].
Hu, Weiwei ;
Tan, Ying .
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) :2719-2731
[14]   A combinatorial particle swarm optimisation for solving permutation flowshop problems [J].
Jarboui, Bassem ;
Ibrahim, Saber ;
Siarry, Patrick ;
Rebai, Abdelwaheb .
COMPUTERS & INDUSTRIAL ENGINEERING, 2008, 54 (03) :526-538
[15]  
Jiang JQ, 2004, LECT NOTES COMPUT SC, V3037, P666
[16]   Hybrid PSO - SA Algorithm for Achieving Partitioning Optimization in various Network Applications [J].
Kathpal, Shikha ;
Vohra, Rajan ;
Singh, Jaideep ;
Sawhney, R. S. .
INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 :1728-1734
[17]  
Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968
[18]   A new hybrid method for multi-objective fuel management optimization using parallel PSO-SA [J].
Khoshahval, F. ;
Zolfaghari, A. ;
Minuchehr, H. ;
Abbasi, M. R. .
PROGRESS IN NUCLEAR ENERGY, 2014, 76 :112-121
[19]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[20]   Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].
Liang, J. J. ;
Qin, A. K. ;
Suganthan, Ponnuthurai Nagaratnam ;
Baskar, S. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) :281-295