Analytical model for the sputtering of rough surfaces

被引:16
作者
Szabo, P. S. [1 ,3 ]
Cupak, C. [1 ]
Biber, H. [1 ]
Jaggi, N. [2 ]
Galli, A. [2 ]
Wurz, P. [2 ]
Aumayr, F. [1 ]
机构
[1] Vienna Univ Technol TU Wien, Inst Appl Phys, Wiedner Haupt Str 8-10-E134, A-1040 Vienna, Austria
[2] Univ Bern, Phys Inst, Sidler Str 5, CH-3012 Bern, Switzerland
[3] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA
基金
瑞士国家科学基金会; 奥地利科学基金会;
关键词
ANGULAR-DEPENDENCE; YIELD; MORPHOLOGY; SIMULATION; DEPOSITION; TRIDYN; CODE;
D O I
10.1016/j.surfin.2022.101924
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sputtering yields of solids under ion bombardment are highly sensitive to the roughness of their surfaces. Understanding how sputtering is exactly affected by different surface morphologies is relevant especially for plasma-wall interaction in fusion reactors and space weathering of planetary surfaces. We present an analytical model that allows to calculate sputtering yields of random gaussian rough surfaces under arbitrary angles of incidence, taking into account local incidence angles, shadowing and redeposition of sputtered materials. Sputtering yields of a rough surface can then be calculated with the sputtering yield's dependence on the ion incidence angle for a flat surface and a single statistical parameter, which characterizes the surface roughness. The model supports previous findings that the mean surface inclination angle delta m is a well-suited parameter to describe the sputtering behavior of rough surfaces. Comparisons of the results to previous experiments and numerical simulations for various cases are presented, showing that the model allows to quantitatively reproduce sputtering yields of different samples over a wide range of roughness regimes.
引用
收藏
页数:11
相关论文
共 52 条
[1]   ERO2.0 modelling of nanoscale surface morphology evolution [J].
Alberti, G. ;
Sala, M. ;
Romazanov, J. ;
Uccello, A. ;
Dellasega, D. ;
Passoni, M. .
NUCLEAR FUSION, 2021, 61 (06)
[2]   Impact of surface enrichment and morphology on sputtering of EUROFER by deuterium [J].
Arredondo, R. ;
Balden, M. ;
Mutzke, A. ;
von Toussaint, U. ;
Elgeti, S. ;
Hoeschen, T. ;
Schlueter, K. ;
Mayer, M. ;
Oberkofler, M. ;
Jacob, W. .
NUCLEAR MATERIALS AND ENERGY, 2020, 23
[3]   Angle-dependent sputter yield measurements of keV D ions on W and Fe and comparison with SDTrimSP and SDTrimSP-3D [J].
Arredondo, R. ;
Oberkofler, M. ;
Schwarz-Selinger, T. ;
von Toussaint, U. ;
Burvvitz, V. V. ;
Mutzke, A. ;
Vassallo, E. ;
Pedroni, M. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :72-76
[4]  
Behrisch R., 2007, Sputtering by particle bombardmentM, DOI [10.1007/978-3-540-44502-9, DOI 10.1007/978-3-540-44502-9]
[5]  
Benninghoven A., 1987, Secondary ion mass spectrometry : basic concepts, instrumental aspects, applications, and trends, V1st
[6]   Redeposition of sputtered material is a nonlinear effect [J].
Bradley, R. Mark .
PHYSICAL REVIEW B, 2011, 83 (07)
[7]   Plasma-wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification [J].
Brezinsek, S. ;
Coenen, J. W. ;
Schwarz-Selinger, T. ;
Schmid, K. ;
Kirschner, A. ;
Hakola, A. ;
Tabares, F. L. ;
van der Meiden, H. J. ;
Mayoral, M. -L. ;
Reinhart, M. ;
Tsitrone, E. ;
Ahlgren, T. ;
Aints, M. ;
Airila, M. ;
Almaviva, S. ;
Alves, E. ;
Angot, T. ;
Anita, V. ;
Parra, R. Arredondo ;
Aumayr, F. ;
Balden, M. ;
Bauer, J. ;
Ben Yaala, M. ;
Berger, B. M. ;
Bisson, R. ;
Bjorkas, C. ;
Radovic, I. Bogdanovic ;
Borodin, D. ;
Bucalossi, J. ;
Butikova, J. ;
Butoi, B. ;
Cadez, I. ;
Caniello, R. ;
Caneve, L. ;
Cartry, G. ;
Catarino, N. ;
Cekada, M. ;
Ciraolo, G. ;
Ciupinski, L. ;
Colao, F. ;
Corre, Y. ;
Costin, C. ;
Craciunescu, T. ;
Cremona, A. ;
De Angeli, M. ;
de Castro, A. ;
Dejarnac, R. ;
Dellasega, D. ;
Dinca, P. ;
Dittmar, T. .
NUCLEAR FUSION, 2017, 57 (11)
[8]   Monte Carlo model of sputtering and other ejection processes within a regolith [J].
Cassidy, TA ;
Johnson, RE .
ICARUS, 2005, 176 (02) :499-507
[9]   Sputter yields of rough surfaces: Importance of the mean surface inclination angle from nano- to microscopic rough regimes [J].
Cupak, C. ;
Szabo, P. S. ;
Biber, H. ;
Stadlmayr, R. ;
Grave, C. ;
Fellinger, M. ;
Broetzner, J. ;
Wilhelm, R. A. ;
Moeller, W. ;
Mutzke, A. ;
Moro, M. V. ;
Aumayr, F. .
APPLIED SURFACE SCIENCE, 2021, 570
[10]   Modelling of surface evolution of rough surface on divertor target in fusion devices [J].
Dai, Shuyu ;
Liu, Shengguang ;
Sun, Jizhong ;
Kirschner, A. ;
Kawamura, G. ;
Tskhakaya, D. ;
Ding, Rui ;
Luo, Guangnan ;
Wang, Dezhen .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :372-376