A polygenic-informed approach to a predictive EEG signature empowers antidepressant treatment prediction: A proof-of-concept study

被引:5
作者
Meijs, Hannah [1 ,4 ,7 ]
Prentice, Amourie [1 ,2 ]
Lin, Bochao D. [1 ]
De Wilde, Bieke [5 ]
Van Hecke, Jan [5 ]
Niemegeers, Peter [5 ]
van Eijk, Kristel [3 ]
Luykx, Jurjen J. [1 ,4 ,6 ]
Arns, Martijn [1 ,2 ]
机构
[1] Brainclin Fdn, Res Inst Brainclin, Nijmegen, Netherlands
[2] Maastricht Univ, Fac Psychol & Neurosci, Dept Cognit Neurosci, Maastricht, Netherlands
[3] Univ Utrecht, Univ Med Ctr, Dept Psychiat, Utrecht Brain Ctr, Utrecht, South Africa
[4] GGNet Mental Hlth, Warnsveld, Netherlands
[5] Ziekenhuis Netwerk Antwerpen ZNA, Dept Psychiat, Antwerp, Belgium
[6] Maastricht Univ, Sch Mental Hlth & Neurosci, Dept Psychiat & Neuropsychol, Med Ctr, Maastricht, Netherlands
[7] Brainclin Fdn, Bijleveldsingel 32, NL-6524 AD Nijmegen, Netherlands
关键词
EEG; LORETA; PRS; MDD; antidepressant; Prediction; TRANSCRANIAL MAGNETIC STIMULATION; ANTERIOR CINGULATE; ALPHA ASYMMETRY; DEPRESSION; EFFICACY; RTMS; OUTCOMES; PHARMACOGENETICS; DISCONTINUATION; CONNECTIVITY;
D O I
10.1016/j.euroneuro.2022.07.006
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The treatment of major depressive disorder (MDD) is hampered by low chances of treatment response in each treatment step, which is partly due to a lack of firmly established outcomepredictive biomarkers. Here, we hypothesize that polygenic-informed EEG signatures may help predict antidepressant treatment response. Using a polygenic-informed electroencephalography (EEG) data-driven, data-reduction approach, we identify a brain network in a large cohort (N = 1,123), and discover it is sex-specifically (male patients, N = 617) associated with polygenic risk score (PRS) of antidepressant response. Subsequently, we demonstrate in three independent datasets the utility of the network in predicting response to antidepressant medication (male, N = 232) as well as repetitive transcranial magnetic stimulation (rTMS) and concurrent psychotherapy (male, N = 95). This network significantly improves a treatment response prediction model with age and baseline severity data (area under the curve, AUC = 0.623 for medica-ton; AUC = 0.719 for rTMS). A predictive model for MDD patients, aimed at increasing the like-lihood of being a responder to antidepressants or rTMS and concurrent psychotherapy based on only this network, yields a positive predictive value (PPV) of 69% for medication and 77% for rTMS. Finally, blinded out-of-sample validation of the network as predictor for psychother-apy response in another independent dataset (male, N = 50) results in a within-subsample re-sponse rate of 50% (improvement of 56%). Overall, the findings provide a first proof-of-concept of a combined genetic and neurophysiological approach in the search for clinically-relevant biomarkers in psychiatric disorders, and should encourage researchers to incorporate genetic information, such as PRS, in their search for clinically relevant neuroimaging biomarkers.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页码:49 / 60
页数:12
相关论文
共 59 条
  • [1] Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry
    Amare, Azmeraw T.
    Schubert, Klaus Oliver
    Baune, Bernhard T.
    [J]. EPMA JOURNAL, 2017, 8 (03) : 211 - 227
  • [2] Aoki Y, 2015, FRONT HUM NEUROSCI, V9, DOI [10.3389/fnhurn.2015.00031, 10.3389/fnhum.2015.00031]
  • [3] EEG Abnormalities Are Associated With Poorer Depressive Symptom Outcomes With Escitalopram and Venlafaxine-XR, but Not Sertraline: Results From the Multicenter Randomized iSPOT-D Study
    Arns, Martijn
    Gordon, Evian
    Boutros, Nash N.
    [J]. CLINICAL EEG AND NEUROSCIENCE, 2017, 48 (01) : 33 - 40
  • [4] EEG alpha asymmetry as a gender-specific predictor of outcome to acute treatment with different antidepressant medications in the randomized iSPOT-D study
    Arns, Martijn
    Bruder, Gerard
    Hegerl, Ulrich
    Spooner, Chris
    Palmer, Donna M.
    Etkin, Amit
    Fallahpour, Kamran
    Gatt, Justine M.
    Hirshberg, Laurence
    Gordon, Evian
    [J]. CLINICAL NEUROPHYSIOLOGY, 2016, 127 (01) : 509 - 519
  • [5] Frontal and rostral anterior cingulate (rACC) theta EEG in depression: Implications for treatment outcome?
    Arns, Martijn
    Etkin, Amit
    Hegerl, Ulrich
    Williams, Leanne M.
    DeBattista, Charles
    Palmer, Donna M.
    Fitzgerald, Paul B.
    Harris, Anthony
    deBeuss, Roger
    Gordon, Evian
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2015, 25 (08) : 1190 - 1200
  • [6] Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder
    Arns, Martijn
    Cerquera, Alexander
    Gutierrez, Rafael M.
    Hasselman, Fred
    Freund, Jan A.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2014, 125 (07) : 1392 - 1399
  • [7] Efficacy of selective serotonin reuptake inhibitors and adverse events: meta-regression and mediation analysis of placebo-controlled trials
    Barth, Michael
    Kriston, Levente
    Klostermann, Swaantje
    Barbui, Corrado
    Cipriani, Andrea
    Linde, Klaus
    [J]. BRITISH JOURNAL OF PSYCHIATRY, 2016, 208 (02) : 114 - 119
  • [8] Major depressive disorder
    Otte, Christian
    Gold, Stefan M.
    Penninx, Brenda W.
    Pariante, Carmine M.
    Etkin, Amit
    Fava, Maurizio
    Mohr, David C.
    Schatzberg, Alan F.
    [J]. NATURE REVIEWS DISEASE PRIMERS, 2016, 2
  • [9] Tutorial: a guide to performing polygenic risk score analyses
    Choi, Shing Wan
    Mak, Timothy Shin-Heng
    O'Reilly, Paul F.
    [J]. NATURE PROTOCOLS, 2020, 15 (09) : 2759 - 2772
  • [10] PRSice-2: Polygenic Risk Score software for biobank-scale data
    Choi, Shing Wan
    O'Reilly, Paul F.
    [J]. GIGASCIENCE, 2019, 8 (07):