On Compact Orthogonally Additive Operators

被引:0
作者
Pliev, M. [1 ]
机构
[1] Russian Acad Sci, Southern Math Inst, Vladikavkaz 362027, Russia
基金
俄罗斯基础研究基金会;
关键词
orthogonally additive operator; AM-compact operator; positive operator; lateral projection; lateral band; C-complete vector lattice; Banach lattice; NARROW;
D O I
10.1134/S1995080221050139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we explore orthogonally additive (nonlinear) operators in vector lattices. First we investigate the lateral order on vector lattices and show that with every element e of a C-complete vector lattice E is associated a lateral-to-order continuous orthogonally additive projection p(e) : E -> F-e. Then we prove that for an order bounded positive AM-compact orthogonally additive operator S : E -> F defined on a C-complete vector lattice E and taking values in a Dedekind complete vector lattice F all elements of the order interval [0, S] are AM-compact operators as well.
引用
收藏
页码:989 / 995
页数:7
相关论文
共 16 条
  • [1] Completely additive and C-compact operators in lattice-normed spaces
    Abasov, Nariman
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (04) : 914 - 928
  • [2] On extensions of some nonlinear maps in vector lattices
    Abasov, Nariman
    Pliev, Marat
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 516 - 527
  • [3] Aliprantis Charalambos D., 2006, POSITIVE OPERATORS, DOI 10.1007/978-1-4020-5008-4
  • [4] A factorization for orthogonally additive operators on Banach lattices
    Feldman, William
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 238 - 245
  • [5] On sums of narrow and compact operators
    Fotiy, O.
    Gumenchuk, A.
    Krasikova, I.
    Popov, M.
    [J]. POSITIVITY, 2020, 24 (01) : 69 - 80
  • [6] Krasnosel'skii MA., 1976, INTEGRAL OPERATORS S
  • [7] Mazn JM., 1990, Rev. Roum. Math. Pures Appl, V35, P431
  • [8] The lateral order on Riesz spaces and orthogonally additive operators
    Mykhaylyuk, Volodymyr
    Pliev, Marat
    Popov, Mikhail
    [J]. POSITIVITY, 2021, 25 (02) : 291 - 327
  • [9] Domination problem for AM-compact abstract Uryson operators
    Orlov, Vladimir
    Pliev, Marat
    Rode, Dmitry
    [J]. ARCHIV DER MATHEMATIK, 2016, 107 (05) : 543 - 552
  • [10] Narrow orthogonally additive operators in lattice-normed spaces
    Pliev, M. A.
    Fang, X.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (01) : 134 - 141