OPTIMIZATION ALGORITHM FOR RECONSTRUCTING INTERFACE CHANGES OF A CONDUCTIVITY INCLUSION FROM MODAL MEASUREMENTS

被引:23
作者
Ammari, Habib [1 ]
Beretta, Elena [2 ]
Francini, Elisa [3 ]
Kang, Hyeonbae [4 ]
Lim, Mikyoung [5 ]
机构
[1] Ecole Polytech, CNRS, Ctr Math Appl, UMR 7641, F-91128 Palaiseau, France
[2] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
[3] Univ Firenze Ulisse Dini, Dipartimento Matemat, I-50134 Florence, Italy
[4] Inha Univ, Dept Math, Inchon 402751, South Korea
[5] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
关键词
Shape reconstruction; vibration analysis; asymptotic expansion; reconstruction algorithm; optimization problem; INHOMOGENEITIES; EIGENVALUES; OPERATORS; FORMULA; DOMAINS;
D O I
10.1090/S0025-5718-10-02344-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an original and promising optimization approach for reconstructing interface changes of a conductivity inclusion from measurements of eigenvalues and eigenfunctions associated with the transmission problem for the Laplacian. Based on a rigorous asymptotic analysis, we derive an asymptotic formula for the perturbations in the modal measurements that are due to small changes in the interface of the inclusion. Using fine gradient estimates, we carefully estimate the error term in this asymptotic formula. We then provide a key dual identity which naturally yields to the formulation of the proposed optimization problem. The viability of our reconstruction approach is documented by a variety of numerical results. The resolution limit of our algorithm is also highlighted.
引用
收藏
页码:1757 / 1777
页数:21
相关论文
共 22 条
[1]   Asymptotic expansions for eigenvalues in the presence of small inhomogeneities [J].
Ammari, H ;
Moskow, S .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (01) :67-75
[2]   Electrical impedance tomography by elastic deformation [J].
Ammari, H. ;
Bonnetier, E. ;
Capdeboscq, Y. ;
Tanter, M. ;
Fink, M. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (06) :1557-1573
[3]  
AMMARI H, NEW OPTIMAL CONTROL
[4]  
Ammari H., 2009, MATH SURV MONGR AM M, V153
[5]  
AMMARI H, T AM MATH S IN PRESS
[6]   Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case [J].
Ammari, Habib ;
Beretta, Elena ;
Francini, Elisa ;
Kang, Hyeonbae ;
Lim, Mikyoung .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (03) :322-339
[7]   Vibration testing for anomaly detection [J].
Ammari, Habib ;
Kang, Hyeonbae ;
Kim, Eunjoo ;
Lee, Hyundae .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (07) :863-874
[8]  
[Anonymous], 1968, OEUVRES JAQUES HADAM
[9]   A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction [J].
Capdeboscq, Y ;
Vogelius, MS .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01) :159-173
[10]  
Garabedian P. R., 1952, B AM MATH SOC, V2, P281