Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract

被引:269
作者
Flerlage, Tim [1 ]
Boyd, David F. [2 ]
Meliopoulos, Victoria [1 ]
Thomas, Paul G. [2 ]
Schultz-Cherry, Stacey [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Infect Dis, 332 N Lauderdale St, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Immunol, 332 N Lauderdale St, Memphis, TN 38105 USA
关键词
IMMUNE-SYSTEM; INFECTION; CORONAVIRUS; COVID-19; CELLS; HOSPITALIZATIONS; EPIDEMIOLOGY; RECOGNITION; CHALLENGES; RECEPTORS;
D O I
10.1038/s41579-021-00542-7
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Influenza viruses cause annual epidemics and occasional pandemics of respiratory tract infections that produce a wide spectrum of clinical disease severity in humans. The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has since caused a pandemic. Both viral and host factors determine the extent and severity of virus-induced lung damage. The host's response to viral infection is necessary for viral clearance but may be deleterious and contribute to severe disease phenotypes. Similarly, tissue repair mechanisms are required for recovery from infection across the spectrum of disease severity; however, dysregulated repair responses may lead to chronic lung dysfunction. Understanding of the mechanisms of immunopathology and tissue repair following viral lower respiratory tract infection may broaden treatment options. In this Review, we discuss the pathogenesis, the contribution of the host response to severe clinical phenotypes and highlight early and late epithelial repair mechanisms following influenza virus infection, each of which has been well characterized. Although we are still learning about SARS-CoV-2 and its disease manifestations in humans, throughout the Review we discuss what is known about SARS-CoV-2 in the context of this broad knowledge of influenza virus, highlighting the similarities and differences between the respiratory viruses. In this Review, Schultz-Cherry, Thomas and colleagues discuss the pathogenesis of influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the human respiratory tract, the contribution of the host response to severe disease, epithelial repair mechanisms following infection, and current and potential future therapies for influenza virus and SARS-CoV-2 infections.
引用
收藏
页码:425 / 441
页数:17
相关论文
共 243 条
[41]   EPIDEMIOLOGIC AND IMMUNOLOGIC SIGNIFICANCE OF AGE DISTRIBUTION OF ANTIBODY TO ANTIGENIC VARIANTS OF INFLUENZA VIRUS [J].
DAVENPORT, FM ;
HENNESSY, AV ;
FRANCIS, T .
JOURNAL OF EXPERIMENTAL MEDICINE, 1953, 98 (06) :641-656
[42]   Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia [J].
de Jong, Menno D. ;
Simmons, Cameron P. ;
Thanh, Tran Tan ;
Hien, Vo Minh ;
Smith, Gavin J. D. ;
Chau, Tran Nguyen Bich ;
Hoang, Dang Minh ;
Chau, Nguyen Van Vinh ;
Khanh, Truong Huu ;
Dong, Vo Cong ;
Qui, Phan Tu ;
Van Cam, Bach ;
Ha, Do Quang ;
Guan, Yi ;
Peiris, J. S. Malik ;
Chinh, Nguyen Tran ;
Hien, Tran Tinh ;
Farrar, Jeremy .
NATURE MEDICINE, 2006, 12 (10) :1203-1207
[43]  
DIEBOLD S, 2004, IMMUNITY, V303, P1529, DOI DOI 10.1126/SCIENCE.1093616
[44]  
DOBSON J, 2015, NATURE, V385, P1729, DOI DOI 10.1016/S0140-6736(14)62449-1
[45]  
DUAN S, 2016, BIOL SEX DIFFER, V7, P25, DOI DOI 10.3389/FIMMU.2016.00025
[46]   Entry of influenza A virus: host factors and antiviral targets [J].
Edinger, Thomas O. ;
Pohl, Marie O. ;
Stertz, Silke .
JOURNAL OF GENERAL VIROLOGY, 2014, 95 :263-277
[47]   The changing landscape of naive T cell receptor repertoire With human aging [J].
Egorov, Evgeny S. ;
Kasatskaya, Sofya A. ;
Zubov, Vasiliy N. ;
Izraelson, Mark ;
Nakonechnaya, Tatiana O. ;
Staroverov, Dmitriy B. ;
Angius, Andrea ;
Cucca, Francesco ;
Mamedov, Ilgar Z. ;
Rosati, Elisa ;
Franke, Andre ;
Shugay, Mikhail ;
Pogorelyy, Mikhail V. ;
Chudakov, Dmitriy M. ;
Britanova, Olga V. .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[48]   Structural and functional consequences of alveolar cell recognition by CD8+ T lymphocytes in experimental lung disease [J].
Enelow, RI ;
Mohammed, AZ ;
Stoler, MH ;
Liu, AN ;
Young, JS ;
Lou, YH ;
Braciale, TJ .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (09) :1653-1661
[49]   Phase 2b Study of Pimodivir (JNJ-63623872) as Monotherapy or in Combination With Oseltamivir for Treatment of Acute Uncomplicated Seasonal Influenza A: TOPAZ Trial [J].
Finberg, Robert W. ;
Lanno, Riin ;
Anderson, David ;
Fleischhackl, Roman ;
van Duijnhoven, Wilbert ;
Kauffman, Robert S. ;
Kosoglou, Teddy ;
Vingerhoets, Johan ;
Leopold, Lorant .
JOURNAL OF INFECTIOUS DISEASES, 2019, 219 (07) :1026-1034
[50]  
FRANK D, 2019, TRENDS IMMUNOL, V26, P99, DOI DOI 10.1038/S41418-018-0212-6