THE CAUCHY PROBLEM FOR THE FRACTIONAL KADOMTSEV-PETVIASHVILI EQUATIONS

被引:21
作者
Linares, Felipe [1 ]
Pilod, Didier [2 ,3 ]
Saut, Jean-Claude [4 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-2194197 Rio De Janeiro, RJ, Brazil
[3] Univ Bergen, Dept Math, N-5020 Bergen, Norway
[4] Univ Paris Saclay, CNRS, Univ Paris Sud, Lab Math,UMR 8628, F-91405 Orsay, France
关键词
KP equations; Burgers equation; dispersion; well-posedness; Strichartz estimate; ill-posedness; GLOBAL WELL-POSEDNESS; SOLITARY-WAVE SOLUTIONS; INITIAL-VALUE PROBLEM; SMOOTHING PROPERTIES; INTERNAL WAVES; BLOW-UP; STABILITY; INSTABILITY; EXISTENCE; BURGERS;
D O I
10.1137/17M1145379
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to prove various ill-posedness and well-posedness results on the Cauchy problem associated to a class of fractional Kadomtsev-Petviashvili (KP) equations, including the KP version of the Benjamin-Ono and intermediate long wave equations.
引用
收藏
页码:3172 / 3209
页数:38
相关论文
共 55 条
[1]  
ABLOWITZ MJ, 1980, STUD APPL MATH, V62, P249
[2]  
[Anonymous], 1996, Contemp. Math.
[3]  
[Anonymous], METHODS APPL ANAL
[4]  
[Anonymous], 1995, Progr. Nonlinear Differential Equations Appl.
[5]   A NEW KIND OF SOLITARY WAVE [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1992, 245 :401-411
[6]   Asymptotic models for internal waves [J].
Bona, J. L. ;
Lannes, D. ;
Saut, J. -C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (06) :538-566
[7]   The cauchy problem and stability of solitary-wave solutions for RLW-KP-type equations [J].
Bona, JL ;
Liu, Y ;
Tom, MM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (02) :437-482
[8]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[9]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P315
[10]   Blow up and instability of solitary wave solutions to a generalized Kadomtsev-Petviashvili equation and two-dimensional Benjamin-Ono equations [J].
Chen, Jianqing ;
Guo, Boling ;
Han, Yongqian .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2089) :49-64