Surface energy of the one-dimensional supersymmetric t - J model with unparallel boundary fields

被引:7
|
作者
Wen, Fakai [1 ,2 ,3 ]
Yang, Zhan-Ying [2 ,4 ]
Yang, Tao [1 ,2 ,4 ]
Hao, Kun [1 ,2 ]
Cao, Junpeng [3 ,5 ,6 ]
Yang, Wen-Li [1 ,2 ,4 ]
机构
[1] Northwest Univ Xian, Inst Modern Phys, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[2] Shaanxi Key Lab Theoret Phys Frontiers, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Inst Phys, 8 3rd South St, Beijing 100190, Peoples R China
[4] Northwest Univ Xian, Sch Phys, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 06期
基金
中国国家自然科学基金;
关键词
Bethe Ansatz; Lattice Integrable Models; BETHE-ANSATZ; THERMODYNAMIC LIMIT; SPIN CHAIN; SUPERCONDUCTIVITY; SYSTEMS; STATISTICS; EXPONENTS; STATES; BAND; GAS;
D O I
10.1007/JHEP06(2018)076
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the thermodynamic limit of the exact solution, which is given by an inhomogeneous T - Q relation, of the one-dimensional supersymmetric t - J model with unparallel boundary magnetic fields. It is shown that the contribution of the inhomogeneous term at the ground state satisfies the L-1 scaling law, where L is the system-size. This fact enables us to calculate the surface (or boundary) energy of the system. The method used in this paper can be generalized to study the thermodynamic limit and surface energy of other models related to rational R-matrices.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Integrable Anderson-type impurity in the supersymmetric t-J model
    H. Frahm
    G. Palacios
    Theoretical and Mathematical Physics, 2007, 150 : 288 - 300
  • [42] CROSSOVER OF SPIN CORRELATIONS IN THE ONE-DIMENSIONAL HUBBARD-MODEL
    IMADA, M
    FURUKAWA, N
    RICE, TM
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (11) : 3861 - 3864
  • [43] Dynamical transition in interaction quenches of the one-dimensional Hubbard model
    Hamerla, Simone A.
    Uhrig, Goetz S.
    PHYSICAL REVIEW B, 2013, 87 (06):
  • [44] Bose condensation and electron pairing in one-dimensional Hubbard model
    Kocharian, AN
    Yang, C
    Chiang, YL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (29-31): : 3538 - 3545
  • [45] Excitation spectrum of one-dimensional extended ionic Hubbard model
    Hafez, M.
    Jafari, S. A.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 78 (03): : 323 - 333
  • [46] Dynamics of resonant energy transfer in one-dimensional chain of Rydberg atoms
    Kaur, Maninder
    Kaur, Paramjit
    Sahoo, Bijaya K.
    Arora, Bindiya
    EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (09):
  • [47] Limit theorems for one-dimensional boundary-value problems
    Kodlyuk, T. I.
    Mikhailets, V. A.
    Reva, N. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (01) : 77 - 90
  • [48] Chaotic dynamics of one-dimensional systems with periodic boundary conditions
    Kumar, Pankaj
    Miller, Bruce N.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [49] Is Dirichlet the physical boundary condition for the one-dimensional hydrogen atom?
    de Oliveira, Cesar R.
    PHYSICS LETTERS A, 2010, 374 (28) : 2805 - 2808
  • [50] Spin-incoherent liquid and interaction-driven criticality in the one-dimensional Hubbard model
    Luo, Jia-Jia
    Pu, Han
    Guan, Xi -Wen
    PHYSICAL REVIEW B, 2023, 107 (20)