Surface energy of the one-dimensional supersymmetric t - J model with unparallel boundary fields

被引:7
|
作者
Wen, Fakai [1 ,2 ,3 ]
Yang, Zhan-Ying [2 ,4 ]
Yang, Tao [1 ,2 ,4 ]
Hao, Kun [1 ,2 ]
Cao, Junpeng [3 ,5 ,6 ]
Yang, Wen-Li [1 ,2 ,4 ]
机构
[1] Northwest Univ Xian, Inst Modern Phys, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[2] Shaanxi Key Lab Theoret Phys Frontiers, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Inst Phys, 8 3rd South St, Beijing 100190, Peoples R China
[4] Northwest Univ Xian, Sch Phys, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 06期
基金
中国国家自然科学基金;
关键词
Bethe Ansatz; Lattice Integrable Models; BETHE-ANSATZ; THERMODYNAMIC LIMIT; SPIN CHAIN; SUPERCONDUCTIVITY; SYSTEMS; STATISTICS; EXPONENTS; STATES; BAND; GAS;
D O I
10.1007/JHEP06(2018)076
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the thermodynamic limit of the exact solution, which is given by an inhomogeneous T - Q relation, of the one-dimensional supersymmetric t - J model with unparallel boundary magnetic fields. It is shown that the contribution of the inhomogeneous term at the ground state satisfies the L-1 scaling law, where L is the system-size. This fact enables us to calculate the surface (or boundary) energy of the system. The method used in this paper can be generalized to study the thermodynamic limit and surface energy of other models related to rational R-matrices.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Reunion Probabilities of One-Dimensional Random Walkers with Mixed Boundary Conditions
    Perez Castillo, Isaac
    Dupic, Thomas
    JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (03) : 606 - 616
  • [32] One-particle spectral functions of the one-dimensional Fermionic Hubbard model with one fermion per site at zero and finite magnetic fields
    Carmelo, Jose M. P.
    Cadez, Tilen
    Sacramento, Pedro D.
    PHYSICAL REVIEW B, 2021, 103 (19)
  • [33] One-dimensional Hubbard model in the presence of magnetic field
    Kioussis, N
    Kocharian, AN
    Park, S
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 177 : 575 - 576
  • [34] Integrable one-dimensional heavy fermion lattice model
    Schlottmann, P
    NUCLEAR PHYSICS B, 1998, 525 (03) : 697 - 720
  • [35] Anyon Hubbard Model in One-Dimensional Optical Lattices
    Greschner, Sebastian
    Santos, Luis
    PHYSICAL REVIEW LETTERS, 2015, 115 (05)
  • [36] Influence of spin exchange anisotropy on phase diagram of the one-dimensional t-U-V-J⊥-Jz model
    Lin, Eryin
    Ding, Hanqin
    Zhang, Jun
    MODERN PHYSICS LETTERS B, 2014, 28 (09):
  • [37] Phase transition in the one-dimensional pair-hopping model with unusual one-electron hopping
    Ding, Hanqin
    Zhang, Jun
    PHYSICS LETTERS A, 2019, 383 (23) : 2784 - 2788
  • [38] First- and second-order quantum phase transitions in the one-dimensional transverse-field Ising model with boundary fields
    Hu, Kun
    Wu, Xintian
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [39] Surface energy and elementary excitations of the XYZ spin chain with integrable open boundary fields
    Xin, Zhirong
    Cao, Junpeng
    Yang, Wen-Li
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (10):
  • [40] Integrable Anderson-type impurity in the supersymmetric t-J model
    Frahm, H.
    Palacios, G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 150 (02) : 288 - 300