Surface energy of the one-dimensional supersymmetric t - J model with unparallel boundary fields

被引:7
|
作者
Wen, Fakai [1 ,2 ,3 ]
Yang, Zhan-Ying [2 ,4 ]
Yang, Tao [1 ,2 ,4 ]
Hao, Kun [1 ,2 ]
Cao, Junpeng [3 ,5 ,6 ]
Yang, Wen-Li [1 ,2 ,4 ]
机构
[1] Northwest Univ Xian, Inst Modern Phys, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[2] Shaanxi Key Lab Theoret Phys Frontiers, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Inst Phys, 8 3rd South St, Beijing 100190, Peoples R China
[4] Northwest Univ Xian, Sch Phys, 229 Taibai Beilu, Xian 710069, Shaanxi, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 06期
基金
中国国家自然科学基金;
关键词
Bethe Ansatz; Lattice Integrable Models; BETHE-ANSATZ; THERMODYNAMIC LIMIT; SPIN CHAIN; SUPERCONDUCTIVITY; SYSTEMS; STATISTICS; EXPONENTS; STATES; BAND; GAS;
D O I
10.1007/JHEP06(2018)076
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the thermodynamic limit of the exact solution, which is given by an inhomogeneous T - Q relation, of the one-dimensional supersymmetric t - J model with unparallel boundary magnetic fields. It is shown that the contribution of the inhomogeneous term at the ground state satisfies the L-1 scaling law, where L is the system-size. This fact enables us to calculate the surface (or boundary) energy of the system. The method used in this paper can be generalized to study the thermodynamic limit and surface energy of other models related to rational R-matrices.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Phase diagram of the one-dimensional t-J model with long-range dipolar interactions
    Cheng, Chen
    Mao, Bin-Bin
    Chen, Fu-Zhou
    Luo, Hong-Gang
    EPL, 2015, 110 (03)
  • [22] Insulating phases of the one-dimensional t-J model with nearest-neighbor repulsive interaction
    Ding, Hanqin
    Wang, Yanshen
    EUROPEAN PHYSICAL JOURNAL B, 2011, 79 (02): : 169 - 175
  • [23] Periodic energy minimizers for a one-dimensional liquid drop model
    Frank, Rupert L.
    Lieb, Elliott H.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (09) : 2069 - 2081
  • [24] Periodic energy minimizers for a one-dimensional liquid drop model
    Rupert L. Frank
    Elliott H. Lieb
    Letters in Mathematical Physics, 2019, 109 : 2069 - 2081
  • [25] Edge singularities in the one-dimensional Bariev model
    Schlottmann, P.
    NUCLEAR PHYSICS B, 2019, 949
  • [26] One-dimensional Ising model with multispin interactions
    Turban, Loic
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (35)
  • [27] Ground-state phase diagram of the one-dimensional t-J model with pair hopping terms
    Coulthard, J. R.
    Clark, S. R.
    Jaksch, D.
    PHYSICAL REVIEW B, 2018, 98 (03)
  • [28] PHASE DIAGRAM OF THE ONE-DIMENSIONAL t-U-J MODEL WITH ON-BOND REPULSION AT HALF FILLING
    Ding, Hanqin
    Wang, Yanshen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (32): : 6307 - 6322
  • [29] Exact surface energies and boundary excitations of the Izergin-Korepin model with generic boundary fields
    Lu, Pengcheng
    Cao, Junpeng
    Yang, Wen-Li
    Marquette, Ian
    Zhang, Yao-Zhong
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (02):
  • [30] A note on the Bethe ansatz solution of the supersymmetric t-J model
    Göhmann, F
    Seel, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (11) : 1041 - 1046