Prym varieties and moduli of polarized Nikulin surfaces

被引:11
作者
Farkas, Gavril [1 ]
Verra, Alessandro [2 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Univ Rome Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
Moduli space of curves; Prym variety; Nikulin K3 surface; K3; SURFACES; RATIONALITY; CURVES; CONE;
D O I
10.1016/j.aim.2015.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a structure theorem for the moduli space R-7 of Prym curves of genus 7 as a projective bundle over the moduli space of 7-nodal rational curves. The existence of this parametrization implies the unirationality of R-7 and that of the moduli space of Nikulin surfaces of genus 7, as well as the rationality of the moduli space of Nikulin surfaces of genus 7 with a distinguished line. Using the results in genus 7, we then establish that R-8 is uniruled. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:314 / 328
页数:15
相关论文
共 22 条
[1]  
Bohning C., 2009, RATIONALITY PROBLEM
[2]  
Boucksom S, 2013, J ALGEBRAIC GEOM, V22, P201
[3]  
Bruns G., ARXIV151108468
[4]  
Castelnuovo G., 1889, RENDICONTI R ACCAD L, V5, P130
[5]  
CATANESE F, 1983, LECT NOTES MATH, V1008, P30
[6]   ON THE TORELLI PROBLEM FOR PRYM VARIETIES [J].
DEBARRE, O .
AMERICAN JOURNAL OF MATHEMATICS, 1989, 111 (01) :111-134
[7]  
Dolgachev I., 1996, J. Math. Sci, V81, P2599, DOI [10.1007/BF02362332, DOI 10.1007/BF02362332]
[8]  
Dolgachev IV, 2008, PURE APPL MATH Q, V4, P501
[9]   THE UNIRATIONALITY OF A5 [J].
DONAGI, R .
ANNALS OF MATHEMATICS, 1984, 119 (02) :269-307
[10]   Moduli of theta-characteristics via Nikulin surfaces [J].
Farkas, Gavril ;
Verra, Alessandro .
MATHEMATISCHE ANNALEN, 2012, 354 (02) :465-496