Universal Spectra of Random Lindblad Operators

被引:79
作者
Denisov, Sergey [1 ,2 ]
Laptyeva, Tetyana [2 ]
Tarnowski, Wojciech [3 ]
Chruscinski, Dariusz [4 ]
Zyczkowski, Karol [3 ,5 ]
机构
[1] OsloMet Oslo Metropolitan Univ, Dept Comp Sci, NO-0130 Oslo, Norway
[2] Lobachevsky Univ, Dept Control Theory & Syst Dynam, Gagarina Ave 23, Nizhnii Novgorod 603950, Russia
[3] Uniwersytet Jagiellonski, Marian Smoluchowski Inst Phys, Krakow, Poland
[4] Jagiellonian Univ, Inst Phys, PL-30348 Krakow, Poland
[5] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
基金
俄罗斯科学基金会;
关键词
RANDOM-MATRIX THEORY; STATISTICAL-THEORY; ENERGY-LEVELS; EIGENVECTORS; EIGENVALUES; ENSEMBLES;
D O I
10.1103/PhysRevLett.123.140403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To understand the typical dynamics of an open quantum system in continuous time, we introduce an ensemble of random Lindblad operators, which generate completely positive Markovian evolution in the space of the density matrices. The spectral properties of these operators, including the shape of the eigenvalue distribution in the complex plane, are evaluated by using methods of free probabilities and explained with non-Hermitian random matrix models. We also demonstrate the universality of the spectral features. The notion of an ensemble of random generators of Markovian quantum evolution constitutes a step towards categorization of dissipative quantum chaos.
引用
收藏
页数:7
相关论文
共 61 条
  • [1] Alicki R., 1987, LECT NOTES PHYS, V286
  • [2] [Anonymous], 2001, Dissipative quantum chaos and decoherence
  • [3] Aubrun G., 2017, Alice and Bob meet Banach
  • [4] Eigenvalues of non-Hermitian random matrices and Brown measure of non-normal operators: Hermitian reduction and linearization method
    Belinschi, Serban T.
    Sniady, Piotr
    Speicher, Roland
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 537 : 48 - 83
  • [5] Bengtsson I., 2017, GEOMETRY QUANTUM STA
  • [6] Breuer H.-P., 2002, The Theory of Open Quantum Systems
  • [7] PLANAR DIAGRAMS
    BREZIN, E
    ITZYKSON, C
    PARISI, G
    ZUBER, JB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) : 35 - 51
  • [8] EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS
    BREZIN, E
    KAZAKOV, VA
    [J]. PHYSICS LETTERS B, 1990, 236 (02) : 144 - 150
  • [9] Universality of spectra for interacting quantum chaotic systems
    Bruzda, Wojciech
    Smaczynski, Marek
    Cappellini, Valerio
    Sommers, Hans-Juergen
    Zyczkowski, Karol
    [J]. PHYSICAL REVIEW E, 2010, 81 (06):
  • [10] Random quantum operations
    Bruzda, Wojciech
    Cappellini, Valerio
    Sommers, Hans-Juergen
    Zyczkowski, Karol
    [J]. PHYSICS LETTERS A, 2009, 373 (03) : 320 - 324