On the catalytic mechanism of bacteriophage endolysins: Opportunities for engineering

被引:48
作者
Love, Michael J. [1 ,2 ,3 ]
Abeysekera, Gayan S. [1 ,2 ]
Muscroft-Taylor, Andrew C. [1 ,2 ,4 ]
Billington, Craig [3 ]
Dobson, Renwick C. J. [1 ,2 ,5 ]
机构
[1] Univ Canterbury, Biomol Interact Ctr, POB 4800, Christchurch 8140, New Zealand
[2] Univ Canterbury, Sch Biol Sci, POB 4800, Christchurch 8140, New Zealand
[3] Inst Environm Sci & Res, POB 29181, Christchurch 8540, New Zealand
[4] Univ Canterbury, Callaghan Innovat, Prot Sci & Engn, Christchurch, New Zealand
[5] Univ Melbourne, Dept Biochem & Mol Biol, Melbourne, Vic, Australia
来源
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS | 2020年 / 1868卷 / 01期
关键词
Endolysin; Enzyme engineering; Catalytic mechanism; Protein structure; Antibacterial; CRYSTAL-STRUCTURE; CELL-WALL; STRUCTURAL BASIS; LYTIC ACTIVITY; REVEALS; DOMAIN; RECOGNITION; BINDING; HYDROLASE; INSIGHTS;
D O I
10.1016/j.bbapap.2019.140302
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteriophage endolysins have the potential to be a long-term antibacterial replacement for antibiotics. The exogenous application of endolysins on some bacteria results in rapid cell lysis. The prospects for endolysins are furthered by the ability to engineer them; novel endolysins can be developed with optimised stability, specificity, and lytic function. But the success of endolysin engineering and application requires a comprehensive understanding of the relationship between the enzymes biochemical, biophysical and bacteriolytic properties. Here, we examine their catalytic mechanisms, opportunities for developing novel endolysins, and highlight areas where a better understanding would support their long-term success as antibacterial agents.
引用
收藏
页数:9
相关论文
共 54 条
[1]   The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases [J].
Bateman, A ;
Rawlings, ND .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (05) :234-237
[2]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[3]   Bacteriophage endolysins as a novel class of antibacterial agents [J].
Borysowski, J ;
Weber-Dabrowska, B ;
Górski, A .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2006, 231 (04) :366-377
[4]  
Briers Y, 2015, FUTURE MICROBIOL, V10, P377, DOI [10.2217/FMB.15.8, 10.2217/fmb.15.8]
[5]   Catalytic diversity and cell wall binding repeats in the phage-encoded endolysins [J].
Broendum, Sebastian S. ;
Buckle, Ashley M. ;
McGowan, Sheena .
MOLECULAR MICROBIOLOGY, 2018, 110 (06) :879-896
[6]   Structural basis for autoinhibition and activation of Auto, a virulence-associated peptidoglycan hydrolase of Listeria monocytogenes [J].
Bublitz, Maike ;
Polle, Lilia ;
Holland, Christin ;
Heinz, Dirk W. ;
Nimtz, Manfred ;
Schubert, Wolf-Dieter .
MOLECULAR MICROBIOLOGY, 2009, 71 (06) :1509-1522
[7]   Dual Active Site in the Endolytic Transglycosylase gp144 of Bacteriophage phiKZ [J].
Chertkov, O. V. ;
Armeev, G. A. ;
Uporov, I. V. ;
Legotsky, S. A. ;
Sykilinda, N. N. ;
Shaytan, A. K. ;
Klyachko, N. L. ;
Miroshnikov, K. A. .
ACTA NATURAE, 2017, 9 (01) :81-87
[8]  
Comeau AM, 2008, RES MICROBIOL, V159, P306, DOI 10.1016/j.resmic.2008.05.001
[9]   Crystal Structure of the CTP1L Endolysin Reveals How Its Activity Is Regulated by a Secondary Translation Product [J].
Dunne, Matthew ;
Leicht, Stefan ;
Krichel, Boris ;
Mertens, Haydyn D. T. ;
Thompson, Andrew ;
Krijgsveld, Jeroen ;
Svergun, Dmitri I. ;
Gomez-Torres, Natalia ;
Garde, Sonia ;
Uetrecht, Charlotte ;
Narbad, Arjan ;
Mayer, Melinda J. ;
Meijers, Rob .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (10) :4882-4893
[10]   The CD27L and CTP1L Endolysins Targeting Clostridia Contain a Built-in Trigger and Release Factor [J].
Dunne, Matthew ;
Mertens, Haydyn D. T. ;
Garefalaki, Vasiliki ;
Jeffries, Cy M. ;
Thompson, Andrew ;
Lemke, Edward A. ;
Svergun, Dmitri I. ;
Mayer, Melinda J. ;
Narbad, Arjan ;
Meijers, Rob .
PLOS PATHOGENS, 2014, 10 (07)