Reactive oxygen species, essential molecules, during plant-pathogen interactions

被引:323
作者
Camejo, Daymi [1 ,2 ]
Guzman-Cedeno, Angel [2 ,3 ]
Moreno, Alexander [4 ]
机构
[1] CSIC, CEBAS, Dept Stress Biol & Plant Pathol, Campus Univ Espinardo, E-30100 Murcia, Spain
[2] ESPAM MES, Sch Agr, Manabi, Ecuador
[3] Eloy Alfaro Univ, ULEAM MES, Agropecuary Sch, Manabi, Ecuador
[4] UTMachala MES, Bot Lab, Machala, Ecuador
关键词
NADPH oxidases; Peroxidases; Organelle; Superoxide; Biotic stress; APOPLASTIC OXIDATIVE BURST; NADPH OXIDASE RBOHD; MANGANESE SUPEROXIDE-DISMUTASE; HYDROGEN-PEROXIDE GENERATION; TRANSGENIC TOBACCO PLANTS; CLASS-III PEROXIDASES; GERMIN-LIKE PROTEIN; DISEASE RESISTANCE; DEFENSE RESPONSES; OXALATE OXIDASE;
D O I
10.1016/j.plaphy.2016.02.035
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:10 / 23
页数:14
相关论文
共 185 条
[1]   Class III peroxidases in plant defence reactions [J].
Almagro, L. ;
Ros, L. V. Gomez ;
Belchi-Navarro, S. ;
Bru, R. ;
Barcelo, A. Ros ;
Pedreno, M. A. .
JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (02) :377-390
[2]   Functional Interplay Between Arabidopsis NADPH Oxidases and Heterotrimeric G Protein [J].
Angel Torres, Miguel ;
Morales, Jorge ;
Sanchez-Rodriguez, Clara ;
Molina, Antonio ;
Dangl, Jeffery L. .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2013, 26 (06) :686-694
[3]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[4]   Nitric Oxide as a Partner of Reactive Oxygen Species Participates in Disease Resistance to Necrotrophic Pathogen Botrytis cinerea in Nicotiana benthamiana [J].
Asai, Shuta ;
Yoshioka, Hirofumi .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2009, 22 (06) :619-629
[5]   Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase [J].
Bader, MR ;
von Caemmerer, S ;
Ruuska, S ;
Nakano, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2000, 355 (1402) :1433-1445
[6]   Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology [J].
Baier, M ;
Dietz, KJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (416) :1449-1462
[7]  
Baker A, 2002, PLANT PEROXISOMES BI
[8]   Engineering Glucosinolates in Plants: Current Knowledge and Potential Uses [J].
Baskar, Venkidasamy ;
Gururani, Mayank Anand ;
Yu, Jae Woong ;
Park, Se Won .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 168 (06) :1694-1717
[9]   ROS as key players in plant stress signalling [J].
Baxter, Aaron ;
Mittler, Ron ;
Suzuki, Nobuhiro .
JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (05) :1229-1240
[10]   Germins and germin-like proteins: Plant do-all proteins. But what do they do exactly? [J].
Bernier, F ;
Berna, A .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2001, 39 (7-8) :545-554